Skip to main content
Log in

Molecular characterization and expression analysis of small heat shock protein 17.3 gene from Sorbus pohuashanensis (Hance) Hedl. in response to abiotic stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sorbus pohuashanensis, a native tree species in China that is distributed at high altitudes. However, the problem of adaptability when introducing S. pohuashanensis to low altitude areas has not been solved. sHSPs can respond and play an essential role when exposing to abiotic stresses for plants. In this study, we aimed to investigate the expression patterns underlying the abiotic stress response of the small heat shock protein 17.3 gene from S. pohuashanensis (SpHSP17.3) at growing low altitude. 1 to 4 years old seedlings of S. pohuashanensis were used as materials for the gene cloning, the tissue-specific expression and the expression analysis underlying the response to abiotic stress using the transgentic methods and qPCR. We identified the open reading frame (ORF) sequence of SpHSP17.3 of 471 bp, which encodes a 17.3 kD protein of 156 amino acids that is located in cytoplasmic. We found that SpHSP17.3 had the highest expression in the stem, followed sequentially by fruit, root, and flower. The expression level of SpHSP17.3 in the leaves was significantly induced by the high temperature (42 °C), NaCl salt and drought stress of S. pohuashanensis. Notably, the same SpHSP17.3 expression trend was detected in the SpHSP17.3-overexpressing homozygous transgenic Arabidopsis underlying the high temperature, NaCl salt and drought stress, and the SpHSP17.3-overexpressing homozygous transgenic Arabidopsis also showed higher seed germination rates under the NaCl salt stress conditions. Our results suggested that SpHSP17.3 is involved in the response to high temperature, Nacl salt, and drought stress which would play a certain effect in the adaptability of introduction and domestication of S. pohuashanensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HSPs:

Heat shock proteins

sHSPs:

small HSPs

ROS:

Reactive oxygen species

ABA:

Abscisic acid

PCR:

Polymerase chain reaction

qPCR:

Fluorescence quantitative PCR

References

  1. Rodríguez-Iturbe B, Johnson RJ (2018) Heat shock proteins and cardiovascular disease. Physiol Int 105(1):19–37. https://doi.org/10.1556/2060.105.2018.1.4

    Article  CAS  PubMed  Google Scholar 

  2. Basha E, Oneill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117. https://doi.org/10.1016/j.tibs.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  3. Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842. https://doi.org/10.1038/nsmb993

    Article  CAS  PubMed  Google Scholar 

  4. Kim KK, Kim R, Kim S-H (1998) Crystal structure of a small heat-shock protein. Nature 394:595. https://doi.org/10.1038/29106

    Article  CAS  PubMed  Google Scholar 

  5. Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmüller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proc Natl Acad Sci USA 110(40):E3780. https://doi.org/10.1073/pnas.1308898110

    Article  PubMed  Google Scholar 

  6. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252. https://doi.org/10.1016/j.tplants.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  7. Scharf K-D, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains (Acd proteins). Cell Stress Chaperones 6(3):225–237

    Article  CAS  Google Scholar 

  8. Ouyang Y, Chen J, Xie W, Wang L, Zhang Q (2009) Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Mol Biol 70(3):341–357. https://doi.org/10.1007/s11103-009-9477-y

    Article  CAS  PubMed  Google Scholar 

  9. Lopes-Caitar VS, De Carvalho MC, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelino-Guimarães FC (2013) Genome-wide analysis of the Hsp 20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genom 14(1):577–594. https://doi.org/10.1186/1471-2164-14-577

    Article  Google Scholar 

  10. Yu J, Cheng Y, Feng K, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Yang Y, Wan H (2016) Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Front Plant Sci 7:1215–1228. https://doi.org/10.3389/fpls.2016.01215

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo M, Liu J, Lu J, Zhai Y, Wang H, Gong Z, Wang S, Lu M (2015) Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Front Plant Sci 6:806. https://doi.org/10.3389/fpls.2015.00806

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q (2018) Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genom 19(1):61–73. https://doi.org/10.1186/s12864-018-4443-1

    Article  CAS  Google Scholar 

  13. Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13(2):127–142. https://doi.org/10.1007/s12192-008-0023-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siddique M, Gernhard S, Von Koskull-Döring P, Vierling E, Scharf K-D (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13(2):183–197. https://doi.org/10.1007/s12192-008-0032-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Waters ER (2012) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64(2):391–403. https://doi.org/10.1093/jxb/ers355

    Article  CAS  PubMed  Google Scholar 

  16. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620. https://doi.org/10.1126/science.1204531

    Article  CAS  PubMed  Google Scholar 

  17. Ahuja I, De Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674. https://doi.org/10.1016/j.tplants.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  18. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61(1):443–462. https://doi.org/10.1146/annurev-arplant-042809-112116

    Article  CAS  PubMed  Google Scholar 

  19. Zupanska AK, Denison FC, Ferl RJ, Paul A-L (2013) Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Am J Bot 100(1):235–248. https://doi.org/10.3732/ajb.1200343

    Article  CAS  PubMed  Google Scholar 

  20. Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32(1):191–222. https://doi.org/10.1007/BF00039383

    Article  CAS  PubMed  Google Scholar 

  21. Alam MN, Zhang L, Yang L, Islam MR, Liu Y, Luo H, Yang P, Wang Q, Chan Z (2018) Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genom 19(1):224–237. https://doi.org/10.1186/s12864-018-4588-y

    Article  CAS  Google Scholar 

  22. Spokevicius AV, Tibbits J, Rigault P, Nolin M-A, Muller C, Merchant A (2017) Medium term water deficit elicits distinct transcriptome responses in Eucalyptus species of contrasting environmental origin. BMC Genom 18(1):284–301. https://doi.org/10.1186/s12864-017-3664-z

    Article  CAS  Google Scholar 

  23. Jia J, Zhou J, Shi W, Cao X, Luo J, Polle A, Luo Z (2017) Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought. Sci Rep 7:43215–43231. https://doi.org/10.1038/srep43215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Bai H, Lu H, Wang Y (2014) Study on biological characteristics of the main planting Sorbus pohuashanesis in Harbin. J Anhui Agric Sci 42(36):12951–12952 (in Chinese)

    Google Scholar 

  25. Peng S, Zheng Y, Ma M, Zhang C, Du X, Li T, Ni Y (2011) Physiological adaptation of Sorbus pohuashanensis seedlings to heat stress. Fore Res 24(5):602–608. https://doi.org/10.1007/s11676-011-0141-4

    Article  Google Scholar 

  26. Liu C, Dou Y, Guan X, Fu Q, Zhang Z, Hu Z, Zheng J, Lu Y, Li W (2017) De novo transcriptomic analysis and development of EST-SSRs for Sorbus pohuashanensis (Hance) Hedl. PLoS ONE 12(6):179219–179234. https://doi.org/10.1371/journal.pone.0179219

    Article  CAS  Google Scholar 

  27. Liu C, Zhang Z, Guan X, Pei X, Zheng J (2019) Cloning and expression analysis of heat shock protein 70 gene in Sorbus pohuashanensis. Mol Plant Breed 17(19):6276–6289. https://doi.org/10.13271/j.mpb.017.006276(in Chinese)

    Article  Google Scholar 

  28. Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe WJJ, Li Y, Liu Y (2012) A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol 193(3):605–616. https://doi.org/10.1111/j.1469-8137.2011.03969.x

    Article  CAS  PubMed  Google Scholar 

  29. Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47(3):325–338

    Article  CAS  Google Scholar 

  30. Chen J, Feige MJ, Franzmann TM, Bepperling A, Buchner J (2010) Regions outside the α-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization. J Mol Biol 398(1):122–131. https://doi.org/10.1016/j.jmb.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  31. Mu C, Wang S, Zhang S, Pan J, Chen N, Li X, Wang Z, Liu H (2011) Small heat shock protein LimHSP16.45 protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily. Plant Cell Rep 30(10):1981–1989. https://doi.org/10.1007/s00299-011-1106-y

    Article  CAS  PubMed  Google Scholar 

  32. Li D, Guo H, Deng Z, Liu H, Chen J, Jiang D, Xia L, Xia Z (2015) Cloning, bioinformatics and expression analysis of sHSP23.8 gene in Hevea brasiliensis. Plant Physiol J 51(11):1955–1962. https://doi.org/10.13592/j.cnki.ppj.2015.0404(in Chinese)

    Article  CAS  Google Scholar 

  33. Chen J, Gao T, Wan S, Zhang Y, Zhou T, Yu Y, Yang Y, Xiao B, Wang W (2018) Cloning and Expression Analysis of Small Heat Shock Protein Genes CsHSP22.4, CsHSP27.4, CsHSP17.5 and CsHSP25.2 in Camellia sinensis. Acta Hortic Sin 45(6):1160–1172. https://doi.org/10.16420/j.issn.0513-353x.2017-0729(in Chinese)

    Article  Google Scholar 

  34. Wang M, Zhu X, Wang W, Wang X, Lin M, Li X (2015) Molecular cloning and expression analysis of low molecular weight heat shock protein gene CsHSP17.2 from Camellia sinensis. J Nanjing Agric Univ 38(3):389–394. https://doi.org/10.7685/j.issn.1000-2030.2015.03.006(in Chinese)

    Article  CAS  Google Scholar 

  35. Kaur H, Petla B, Kamble N, Singh A, Rao V, Salvi P, Ghosh S, Majee M (2015) Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Front Plant Sci 6:713–725. https://doi.org/10.3389/fpls.2015.00713

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fu X (2014) Chaperone function and mechanism of small heat-shock proteins. Acta Biochim Biophys Sin 46(5):347–356. https://doi.org/10.1093/abbs/gmt152

    Article  PubMed  Google Scholar 

  37. Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK (2019) Advances in understanding salt tolerance in rice. Theor Appl Genet 132(4):851–870. https://doi.org/10.1007/s00122-019-03301-8

    Article  CAS  PubMed  Google Scholar 

  38. Chu TN, Tran BTH, Van Bui L, Hoang MTT (2019) Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res Notes 12(1):11–17. https://doi.org/10.1186/s13104-019-4046-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang L, Hu W, Gao Y, Pan H, Zhang Q (2018) A cytosolic class II small heat shock protein, PfHSP172, confers resistance to heat, cold, and salt stresses in transgenic Arabidopsis. Genet Mol Biol 41(3):649–660. https://doi.org/10.1590/1678-4685-GMB-2017-0206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Forest Genetic Resources Platform (NFGRP) for providing the S. pohuashanensis plant resources. We also would like to thank Editage (www.editage.cn) for English language editing. This research was funded by “the National Natural Science Foundation Project of China (No. 31770369) and Building Project of Beijing Laboratory of Urban and Rural Ecological Environment (No. PXM2015-014207-000014)”.

Author information

Authors and Affiliations

Authors

Contributions

ZZ performed the experiments and bioinformatics analysis and drafted the manuscript. XP performed the real-time qRT-PCR experiments of transgenic Arabidopsis; RZ and YL planted the sampling plants; JZ critically evaluated the protocol and data and revised the final version of the manuscript.

Corresponding author

Correspondence to Jian Zheng.

Ethics declarations

Conflicts of interest

All authors confirm that all data underlying the findings are fully available without restriction and have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_6020_MOESM1_ESM.pdf

Supplementary material 1 (PDF 71 kb) Supplementary Materials Fig. S1: The amplified bands of SpHSP17.3 genes in cDNA, DNA, and recombinant pTOPO-T plasmid. 1-3, the amplified bands of SpHSP 17.3 with cDNA, DNA, pTOPO-SpHSP17.3 as template, respectively. Fig. S2: Homology amino acid sequences alignment of SpHSP17.3. MdHSP17.3, M. domestica; PbHSP17.9, Pyrus x bretschneideri; EjsHSP4, E. japonica; PsHSP17.1, P. salicina; PaHSP17.1, P. avium; PpHSP17.1, P. persica; PdsHSP, P. dulcis; PmHSP17.1, P. mume; HbHSP17.9, H. brasiliensis; PtHSP17.9, P. trichocarpa. Fig. S3: Phylogenetic tree analysis of SpHSP17.3 with other HSP20 from model plant species. CI-CVI, cytosol Is-VIs; ER, endoplasmic reticulum; PX, peroxisomes; CP, chloroplasts; MI, mitochondria; MII, mitochondria IIs. Fig. S4: Protein secondary structure prediction of SpHSP17.3. h, Alpha helix; c, Random coil; e, Extended strand; t, Beta turn. Fig. S5: Prediction of phosphorylation sites of SpHSP17.3. Fig. S6: Identification of SpHSP17.3 transgenic Arabidopsis lines using PCR analysis with gDNA as a template. Fig. S7: Identification of the three SpHSP17.3-overexpressing homozygous transgenic Arabidopsis lines using PCR analysis with cDNA as a template; Fig. S8: Phenotype of SpHSP17.3-overexpressing homozygous transgenic Arabidopsis lines and wild type under abiotic stress. A, Seedling root under 8% mannitol conditions; B, Seedling root under 130 mM NaCl conditions; C, Phenotype under 42 °C after 12 h; D, Phenotype under 150 mM NaCl after three days. Table S1: Primer sequences for Sorbus pohuashanensis HSP17.3 cloning and expression. Table S2: Similarity and identity of the Sorbus pohuashanensis HSP17.3 (SpHSP17.3) amino acid sequence with HSP20 from other plant species. Table S3: Amino acid sequence of sHSPs from different subgroups of model species.

Supplementary material 2 (PDF 417 kb)

Supplementary material 3 (PDF 211 kb)

Supplementary material 4 (PDF 93 kb)

Supplementary material 5 (PDF 104 kb)

Supplementary material 6 (PDF 78 kb)

Supplementary material 7 (PDF 78 kb)

Supplementary material 8 (PDF 155 kb)

Supplementary material 9 (DOCX 12 kb)

Supplementary material 10 (DOCX 20 kb)

Supplementary material 11 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Pei, X., Zhang, R. et al. Molecular characterization and expression analysis of small heat shock protein 17.3 gene from Sorbus pohuashanensis (Hance) Hedl. in response to abiotic stress. Mol Biol Rep 47, 9325–9335 (2020). https://doi.org/10.1007/s11033-020-06020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06020-2

Keywords

Navigation