Skip to main content
Log in

Correlation between oxidative stress and NF-κB signaling pathway in the obesity-asthma mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In this study, a mice model of obesity-asthma was established. We investigated the correlation between oxidative stress and NF-κB signaling pathway in the lung tissues, together with the effects of acetylcysteine. The animals were fed on a high-fat diet, and then ovalbumin (OVA) sensitization was utilized to establish the obesity-asthma model. N-acetylcysteine was used to treat asthma, animals treated with budesonide served as control. The malondialdehyde (MDA) in the lung tissues was determined, together with the activity of glutathione (GSH). EMAS assay was utilized to measure the nuclear factor-κB-P65 (NF-κB-P65) in lung tissues. Western blot analysis was performed to determine the expression of inhibitor kappa B-α (IκB-α) and inhibitor kappa B kinase-β (IKK-β). The MDA in the asthma groups showed significantly elevation (P < 0.01), and the GSH showed significant decrease (P < 0.01), especially in the obesity-asthma group. The efficiency of N-acetylcysteine was superior to that of the budesonide in the decline of MDA and elevation of GSH (P < 0.01). In both asthma groups, the expression of IKK-β and transcription of NF-κB-P65 in the lung tissues showed significant elevation (P < 0.01), and IκB-α showed significant decline (P < 0.01), especially in the obesity-asthma group. There was decline of IKK-β and NF-κB-P65 and elevation of IκB-α in the N-acetylcysteine group, which was even significantly in the Budesonide group (P < 0.01). There was a positive correlation between MDA and NF-κB activation in the lung tissues in all the asthma groups and treatment groups (P < 0.05). Obesity-asthma mice showed higher oxidative stress and activation of NF-κB compared with that of the asthma mice. There was a positive correlation between MDA and NF-κB activation in the lung tissues in the asthma groups. N-acetylcysteine was more effective in reducing the oxidative stress compared to the budesonide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data were available upon appropriate request.

References

  1. Trokart R, Demarche S, Schleich F, Paquot N, Louis R (2017) Asthma and obesity. Rev Med Liege 72(5):241–245

    CAS  PubMed  Google Scholar 

  2. Lentferink YE, Boogaart NE, Balemans WAF, Knibbe CAJ, van der Vorst MMJ (2019) Asthma medication in children who are overweight/obese: justified treatment? BMC Pediatr 19(1):148. https://doi.org/10.1186/s12887-019-1526-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lessard A, Turcotte H, Cormier Y, Boulet LP (2008) Obesity and asthma: a specific phenotype? Chest 134(2):317–323. https://doi.org/10.1378/chest.07-2959

    Article  PubMed  Google Scholar 

  4. Sutherland ER, Goleva E, Strand M, Beuther DA, Leung DY (2008) Body mass and glucocorticoid response in asthma. Am J Respir Crit Care Med 178(7):682–687. https://doi.org/10.1164/rccm.200801-076OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Novosad S, Khan S, Wolfe B, Khan A (2013) Role of obesity in asthma control, the obesity-asthma phenotype. J Allergy 2013:538642. https://doi.org/10.1155/2013/538642

    Article  Google Scholar 

  6. Albuali WH (2014) Evaluation of oxidant-antioxidant status in overweight and morbidly obese Saudi children. World J Clin Pediatr 3(1):6–13. https://doi.org/10.5409/wjcp.v3.i1.6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Komakula S, Khatri S, Mermis J, Savill S, Haque S, Rojas M, Brown L, Teague GW, Holguin F (2007) Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respir Res 8:32. https://doi.org/10.1186/1465-9921-8-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, Pearson M, Nassar M, Telljohann R, Maudsley S, Carlson O, John S, Laub DR, Mattson MP (2007) Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med 42(5):665–674. https://doi.org/10.1016/j.freeradbiomed.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  9. Jin J (2000) Advances on NF-kB. Guo Wai Yi Xue Yao Xue Fen Ce 27(3):133–137

    Google Scholar 

  10. Carlsen H, Haugen F, Zadelaar S, Kleemann R, Kooistra T, Drevon CA, Blomhoff R (2009) Diet-induced obesity increases NF-kappaB signaling in reporter mice. Genes Nutr 4(3):215–222. https://doi.org/10.1007/s12263-009-0133-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792(7):643–650. https://doi.org/10.1016/j.bbadis.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  12. Hart LA, Krishnan VL, Adcock IM, Barnes PJ, Chung KF (1998) Activation and localization of transcription factor, nuclear factor-kappaB, in asthma. Am J Respir Crit Care Med 158(5 Pt 1):1585–1592. https://doi.org/10.1164/ajrccm.158.5.9706116

    Article  CAS  PubMed  Google Scholar 

  13. Lee KS, Park HS, Park SJ, Kim SR, Min KH, Jin SM, Li L, Lee YC (2006) An antioxidant modulates expression of receptor activator of NF-kappaB in asthma. Exp Mol Med 38(3):217–229. https://doi.org/10.1038/emm.2006.27

    Article  CAS  PubMed  Google Scholar 

  14. Desmet C, Gosset P, Pajak B, Cataldo D, Bentires-Alj M, Lekeux P, Bureau F (2004) Selective blockade of NF-kappa B activity in airway immune cells inhibits the effector phase of experimental asthma. J Immunol 173(9):5766–5775. https://doi.org/10.4049/jimmunol.173.9.5766

    Article  CAS  PubMed  Google Scholar 

  15. Lingappan K (2018) NF-kappaB in oxidative stress. Curr Opin Toxicol 7:81–86. https://doi.org/10.1016/j.cotox.2017.11.002

    Article  PubMed  Google Scholar 

  16. Freitas PD, Ferreira PG, Silva AG, Stelmach R, Carvalho-Pinto RM, Fernandes FL, Mancini MC, Sato MN, Martins MA, Carvalho CR (2017) The role of exercise in a weight-loss program on clinical control in obese adults with asthma, a randomized controlled trial. Am J Respir Crit Care Med 195(1):32–42. https://doi.org/10.1164/rccm.201603-0446OC

    Article  PubMed  Google Scholar 

  17. Liu X, Lin R, Zhao B, Guan R, Li T, Jin R (2016) Correlation between oxidative stress and the NF-kappaB signaling pathway in the pulmonary tissues of obese asthmatic mice. Mol Med Rep 13(2):1127–1134. https://doi.org/10.3892/mmr.2015.4663

    Article  CAS  PubMed  Google Scholar 

  18. Qian J, Xu YQ, Yu ZW (2018) Budesonide and calcitriol synergistically inhibit airway remodeling in asthmatic mice. Can Respir J 2018:5259240

    Article  Google Scholar 

  19. de Souza SV, Peters B, Côco LZ, Alves GM (2019) Silymarin protects against radiocontrast-induced nephropathy in mice. Life Sci 228:305–315

    Article  Google Scholar 

  20. Lee YC, Lee KS, Park SJ, Park HS, Lim JS, Park KH, Im MJ, Choi IW, Lee HK, Kim UH (2004) Blockade of airway hyperresponsiveness and inflammation in a murine model of asthma by a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid. Faseb J 18(15):1917–1919. https://doi.org/10.1096/fj.04-2212fje

    Article  CAS  PubMed  Google Scholar 

  21. North ML, Khanna N, Marsden PA, Grasemann H, Scott JA (2009) Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol 296(6):L911–920. https://doi.org/10.1152/ajplung.00025.2009

    Article  CAS  PubMed  Google Scholar 

  22. Kharitonov SA, Donnelly LE, Montuschi P, Corradi M, Collins JV, Barnes PJ (2002) Dose-dependent onset and cessation of action of inhaled budesonide on exhaled nitric oxide and symptoms in mild asthma. Thorax 57(10):889–896. https://doi.org/10.1136/thorax.57.10.889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mishra V, Banga J, Silveyra P (2018) Oxidative stress and cellular pathways of asthma and inflammation: therapeutic strategies and pharmacological targets. Pharmacol Ther 181:169–182. https://doi.org/10.1016/j.pharmthera.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  24. Groot LES, Sabogal Pineros YS, Bal SM, van de Pol MA, Hamann J, Sterk PJ, Kulik W, Lutter R (2019) Do eosinophils contribute to oxidative stress in mild asthma? Clin Exp Allergy 49(6):929–931. https://doi.org/10.1111/cea.13389

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aljada A, Mohanty P, Ghanim H, Abdo T, Tripathy D, Chaudhuri A, Dandona P (2004) Increase in intranuclear nuclear factor kappaB and decrease in inhibitor kappaB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am J Clin Nutr 79(4):682–690. https://doi.org/10.1093/ajcn/79.4.682

    Article  CAS  PubMed  Google Scholar 

  26. Scott HA, Gibson PG, Garg ML, Wood LG (2011) Airway inflammation is augmented by obesity and fatty acids in asthma. Eur Respir J 38(3):594–602

    Article  CAS  Google Scholar 

  27. de Jesus JPV, Lima-Matos AS, AlmeidaBião etl PCAV (2018) Obesity and asthma: clinical and laboratory characterization of a common combination. J Bras Pneumol 44(3):207–212

    Article  Google Scholar 

  28. Zhang JH, Chen YP, Yang X, Li CQ (2018) Vitamin D3 levels and NLRP3 expression in murine models of obese asthma: association with asthma outcomes. Braz J Med Biol Res 51(1):e6841

    Article  Google Scholar 

  29. Zheng R, Zhang W (2018) Obesity and asthma related airway hyperreactivity. Zhong Hua Yi Xue Za Zhi 98(32):2609–2611

    Google Scholar 

  30. Lee KS, Kim SR, Park HS, Park SJ, Min KH, Lee KY, Choe YH, Hong SH, Han HJ, Lee YR, Kim JS, Atlas D, Lee YC (2007) A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha. Exp Mol Med 39(6):756–768. https://doi.org/10.1038/emm.2007.82

    Article  CAS  PubMed  Google Scholar 

  31. Bao A, Zhou X (2012) Oxidative stress and anti-oxidation therapy in bronchial asthma. Guo Ji Hu Xi Za Zhi 32(18):1426–1431

    Google Scholar 

Download references

Funding

Not available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochun Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yi, M., Jin, R. et al. Correlation between oxidative stress and NF-κB signaling pathway in the obesity-asthma mice. Mol Biol Rep 47, 3735–3744 (2020). https://doi.org/10.1007/s11033-020-05466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05466-8

Keywords

Navigation