Skip to main content

Advertisement

Log in

Concentration-dependent effects of sodium cholate and deoxycholate bile salts on breast cancer cells proliferation and survival

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bile acids (BAs) are bioactive molecules that have potential therapeutic interest and their derived salts are used in several pharmaceutical systems. BAs have been associated with tumorigenesis of several tissues including the mammary tissue. Therefore, it is crucial to characterize their effects on cancer cells. The objective of this work was to analyse the molecular and cellular effects of the bile salts sodium cholate and sodium deoxycholate on epithelial breast cancer cell lines. Bile salts (BSs) effects over breast cancer cells viability and proliferation were assessed by MTS and BrdU assays, respectively. Activation of cell signaling mediators was determined by immunobloting. Microscopy was used to analyze cell migration, and cellular and nuclear morphology. Interference of membrane fluidity was studied by generalized polarization and fluorescence anisotropy. BSs preparations were characterized by transmission electron microscopy and dynamic light scattering. Sodium cholate and sodium deoxycholate had dual effects on cell viability, increasing it at the lower concentrations assessed and decreasing it at the highest ones. The increase of cell viability was associated with the promotion of AKT phosphorylation and cyclin D1 expression. High concentrations of bile salts induced apoptosis as well as sustained activation of p38 and AKT. In addition, they affected cell membrane fluidity but not significant effects on cell migration were observed. In conclusion, bile salts have concentration-dependent effects on breast cancer cells, promoting cell proliferation at physiological levels and being cytotoxic at supraphysiological ones. Their effects were associated with the activation of kinases involved in cell signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Abbreviations

AKT:

Protein kinase B

BrdU:

Bromodeoxyuridine

ERK 1/2:

Extracellular signal-regulated protein kinases 1 and 2

FXRα:

Farnesoid X receptor alpha

GP:

Generalalized polarization

JNK:

Jun amino-terminal kinase

MAPKS:

Mitogen-activated protein kinases

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

PARP:

Poly ADP-ribose polymerase

PI3K:

Phosphatidylinositide 3-kinases

References

  1. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65(16):2461–2483. https://doi.org/10.1007/s00018-008-7568-6

    Article  CAS  PubMed  Google Scholar 

  2. Copple BL, Li T (2016) Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 104:9–21. https://doi.org/10.1016/j.phrs.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  3. Šarenac TMMM (2018) Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front Pharmacol 9: https://doi.org/10.3389/fphar.2018.00939

  4. Mace TA, Shakya R, Elnaggar O, Wilson K, Komar HM, Yang J, Pitarresi JR, Young GS, Ostrowski MC, Ludwig T, Bekaii-Saab T, Bloomston M, Lesinski GB (2015) Single agent BMS-911543 Jak2 inhibitor has distinct inhibitory effects on STAT5 signaling in genetically engineered mice with pancreatic cancer. Oncotarget 6(42):44509–44522. https://doi.org/10.18632/oncotarget.6332

    Article  PubMed  PubMed Central  Google Scholar 

  5. Faustino C, Serafim C, Rijo P, Reis CP (2016) Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv 13(8):1133–1148. https://doi.org/10.1080/17425247.2016.1178233

    Article  CAS  PubMed  Google Scholar 

  6. Selvam S, Andrews ME, Mishra AK (2009) A photophysical study on the role of bile salt hydrophobicity in solubilizing amphotericin B aggregates. J Pharm Sci 98(11):4153–4160. https://doi.org/10.1002/jps.21718

    Article  CAS  PubMed  Google Scholar 

  7. Atanackovic M, Posa M, Heinle H, Gojkovic-Bukarica L, Cvejic J (2009) Solubilization of resveratrol in micellar solutions of different bile acids. Colloids Surf B Biointerfaces 72(1):148–154. https://doi.org/10.1016/j.colsurfb.2009.03.029

    Article  CAS  PubMed  Google Scholar 

  8. Moghimipour E, Ameri A, Handali S (2015) Absorption-Enhancing Effects of Bile Salts. Molecules 20(8):14451–14473. https://doi.org/10.3390/molecules200814451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reis CP, Silva C, Martinho N, Rosado C (2013) Drug carriers for oral delivery of peptides and proteins: accomplishments and future perspectives. Ther Deliv 4(2):251–265. https://doi.org/10.4155/tde.12.143

    Article  CAS  PubMed  Google Scholar 

  10. Aburahma MH (2016) Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 23(6):1847–1867. https://doi.org/10.3109/10717544.2014.976892

    Article  CAS  PubMed  Google Scholar 

  11. Tang X, Cai S, Zhang R, Liu P, Chen H, Zheng Y, Sun L (2013) Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment. Nanoscale Res Lett 8(1):420. https://doi.org/10.1186/1556-276X-8-420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaturvedi K, Ganguly K, Kulkarni AR, Rudzinski WE, Krauss L, Nadagouda MN, Aminabhavi TM (2015) Oral insulin delivery using deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles. Nanomedicine (Lond) 10(10):1569–1583. https://doi.org/10.2217/nnm.15.36

    Article  CAS  Google Scholar 

  13. Zengin A, Yildirim E, Tamer U, Caykara T (2013) Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol. Analyst 138(23):7238–7245. https://doi.org/10.1039/c3an01458d

    Article  CAS  PubMed  Google Scholar 

  14. Cook JW KE, Kennaway NM (1940) Production of tumours in mice by deoxycholic acid. Nature 145 (627)

    Article  CAS  Google Scholar 

  15. Narisawa T, Magadia NE, Weisburger JH, Wynder EL (1974) Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats. J Natl Cancer Inst 53(4):1093–1097

    Article  CAS  Google Scholar 

  16. Kobori O, Watanabe J, Shimizu T, Shoji M, Morioka Y (1984) Enhancing effect of sodium taurocholate on N-methyl-N'-nitro-N-nitrosoguanidine-induced stomach tumorigenesis in rats. Gan 75(8):651–654

    CAS  PubMed  Google Scholar 

  17. Bernstein NK, Williams RS, Rakovszky ML, Cui D, Green R, Karimi-Busheri F, Mani RS, Galicia S, Koch CA, Cass CE, Durocher D, Weinfeld M, Glover JN (2005) The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol Cell 17(5):657–670. https://doi.org/10.1016/j.molcel.2005.02.012

    Article  CAS  PubMed  Google Scholar 

  18. Bernstein H, Bernstein C, Payne CM, Dvorak K (2009) Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol 15(27):3329–3340

    Article  CAS  Google Scholar 

  19. Costarelli V (2009) Bile acids as possible human carcinogens: new tricks from an old dog. Int J Food Sci Nutr 60(Suppl 6):116–125. https://doi.org/10.1080/09637480902970967

    Article  CAS  PubMed  Google Scholar 

  20. DeRubertis FR, Craven PA, Saito R (1984) Bile salt stimulation of colonic epithelial proliferation: evidence for involvement of lipoxygenase products. J Clin Invest 74(5):1614–1624. https://doi.org/10.1172/JCI111577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Craven PA, Pfanstiel J, DeRubertis FR (1986) Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. J Clin Invest 77(3):850–859. https://doi.org/10.1172/JCI112382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dent P, Fang Y, Gupta S, Studer E, Mitchell C, Spiegel S, Hylemon PB (2005) Conjugated bile acids promote ERK1/2 and AKT activation via a pertussis toxin-sensitive mechanism in murine and human hepatocytes. Hepatology 42(6):1291–1299. https://doi.org/10.1002/hep.20942

    Article  CAS  PubMed  Google Scholar 

  23. Studer FR, Gratz KW, Mutzbauer TS (2012) Comparison of clonidine and midazolam as anxiolytic premedication before wisdom tooth surgery: a randomized, double-blind, crossover pilot study. Oral Maxillofac Surg 16(4):341–347. https://doi.org/10.1007/s10006-012-0319-8

    Article  PubMed  Google Scholar 

  24. Drasar BS, Irving D (1973) Environmental factors and cancer of the colon and breast. Br J Cancer 27(2):167–172

    Article  CAS  Google Scholar 

  25. van Faassen A, Ochsenkuhn T, Houterman S, van der Ploeg EM, Bueno-de-Mesquita BH, Ocke MC, Bayerdorffer E, Janknegt RA (1997) Plasma deoxycholic acid is related to deoxycholic acid in faecal water. Cancer Lett 114(1–2):293–294. https://doi.org/10.1016/s0304-3835(97)04683-1

    Article  PubMed  Google Scholar 

  26. Blazquez AMG, Macias RIR, Cives-Losada C, de la Iglesia A, Marin JJG, Monte MJ (2017) Lactation during cholestasis: Role of ABC proteins in bile acid traffic across the mammary gland. Sci Rep 7(1):7475. https://doi.org/10.1038/s41598-017-06315-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gudmundsson S, Moller TR, Olsson H (1989) Cancer incidence after cholecystectomy–a cohort study with 30 years follow-up. Eur J Surg Oncol 15(2):113–117

    CAS  PubMed  Google Scholar 

  28. Baker PR, Reid, A.D., Siow, Y., & Preece, P.E. (1986) Bile acids in human breast cyst fluid BiochemSocTrans 14 (962)

  29. Raju U, Levitz M, Javitt NB (1990) Bile acids in human breast cyst fluid: the identification of lithocholic acid. J Clin Endocrinol Metab 70(4):1030–1034. https://doi.org/10.1210/jcem-70-4-1030

    Article  CAS  PubMed  Google Scholar 

  30. Journe F, Laurent G, Chaboteaux C, Nonclercq D, Durbecq V, Larsimont D, Body JJ (2008) Farnesol, a mevalonate pathway intermediate, stimulates MCF-7 breast cancer cell growth through farnesoid-X-receptor-mediated estrogen receptor activation. Breast Cancer Res Treat 107(1):49–61. https://doi.org/10.1007/s10549-007-9535-6

    Article  CAS  PubMed  Google Scholar 

  31. Baptissart M, Vega A, Maqdasy S, Caira F, Baron S, Lobaccaro JM, Volle DH (2013) Bile acids: from digestion to cancers. Biochimie 95(3):504–517. https://doi.org/10.1016/j.biochi.2012.06.022

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez L, Diaz ME, Miquet JG, Sotelo AI, Fernandez D, Dominici FP, Bartke A, Turyn D (2010) GH modulates hepatic epidermal growth factor signaling in the mouse. J Endocrinol 204(3):299–309. https://doi.org/10.1677/JOE-09-0372

    Article  CAS  PubMed  Google Scholar 

  33. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  34. Celiz G, Alfaro FF, Cappellini C, Daz M, Verstraeten SV (2013) Prunin- and hesperetin glucoside-alkyl (C4–C18) esters interaction with Jurkat cells plasma membrane: consequences on membrane physical properties and antioxidant capacity. Food Chem Toxicol 55:411–423. https://doi.org/10.1016/j.fct.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  35. Buffone MG, Doncel GF, Calamera JC, Verstraeten SV (2009) Capacitation-associated changes in membrane fluidity in asthenozoospermic human spermatozoa. Int J Androl 32(4):360–375. https://doi.org/10.1111/j.1365-2605.2008.00874.x

    Article  CAS  PubMed  Google Scholar 

  36. Verstraeten SV, Oteiza PI (2000) Effects of Al(3+) and related metals on membrane phase state and hydration: correlation with lipid oxidation. Arch Biochem Biophys 375(2):340–346. https://doi.org/10.1006/abbi.1999.1671

    Article  CAS  PubMed  Google Scholar 

  37. Raju GC (1990) The histological and immunohistochemical evidence of squamous metaplasia from the myoepithelial cells in the breast. Histopathology 17(3):272–275

    Article  CAS  Google Scholar 

  38. Costarelli V, Sanders TA (2002) Plasma deoxycholic acid concentration is elevated in postmenopausal women with newly diagnosed breast cancer. Eur J Clin Nutr 56(9):925–927. https://doi.org/10.1038/sj.ejcn.1601396

    Article  CAS  PubMed  Google Scholar 

  39. Tang W, Putluri V, Ambati CR, Dorsey TH, Putluri N, Ambs S (2019) Liver- and microbiome-derived bile acids accumulate in human breast tumors and inhibit growth and improve patient survival. Clin Cancer Res 25(19):5972–5983. https://doi.org/10.1158/1078-0432.CCR-19-0094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiao L, Studer E, Leach K, McKinstry R, Gupta S, Decker R, Kukreja R, Valerie K, Nagarkatti P, El Deiry W, Molkentin J, Schmidt-Ullrich R, Fisher PB, Grant S, Hylemon PB, Dent P (2001) Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol Biol Cell 12(9):2629–2645. https://doi.org/10.1091/mbc.12.9.2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jean-Louis S, Akare S, Ali MA, Mash EA Jr, Meuillet E, Martinez JD (2006) Deoxycholic acid induces intracellular signaling through membrane perturbations. J Biol Chem 281(21):14948–14960. https://doi.org/10.1074/jbc.M506710200

    Article  CAS  PubMed  Google Scholar 

  42. Liang H, Estes MK, Zhang H, Du G, Zhou Y (2018) Bile acids target proteolipid nano-assemblies of EGFR and phosphatidic acid in the plasma membrane for stimulation of MAPK signaling. PLoS ONE 13(8):e0198983. https://doi.org/10.1371/journal.pone.0198983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105(33):11613–11618. https://doi.org/10.1073/pnas.0801763105

    Article  PubMed  Google Scholar 

  44. Zhao Z, Ukidve A, Krishnan V, Mitragotri S (2019) Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 143:3–21. https://doi.org/10.1016/j.addr.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  45. Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, Tang P (2010) The expression patterns of er, pr, her2, ck5/6, egfr, ki-67 and ar by immunohistochemical analysis in breast cancer cell lines. Breast Cancer 4:35–41

    PubMed  Google Scholar 

  46. Maldonado-Valderrama J, Wilde P, Macierzanka A, Mackie A (2011) The role of bile salts in digestion. Adv Colloid Interface Sci 165(1):36–46. https://doi.org/10.1016/j.cis.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  47. Enhsen A KW, Wess G (1998) Bile acids in drug discovery. Drug Discov Today 3

    Article  CAS  Google Scholar 

  48. Swales KE, Korbonits M, Carpenter R, Walsh DT, Warner TD, Bishop-Bailey D (2006) The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression. Cancer Res 66(20):10120–10126. https://doi.org/10.1158/0008-5472.CAN-06-2399

    Article  CAS  PubMed  Google Scholar 

  49. Baker PR, Wilton JC, Jones CE, Stenzel DJ, Watson N, Smith GJ (1992) Bile acids influence the growth, oestrogen receptor and oestrogen-regulated proteins of MCF-7 human breast cancer cells. Br J Cancer 65(4):566–572

    Article  CAS  Google Scholar 

  50. Silva J, Dasgupta S, Wang G, Krishnamurthy K, Ritter E, Bieberich E (2006) Lipids isolated from bone induce the migration of human breast cancer cells. J Lipid Res 47(4):724–733. https://doi.org/10.1194/jlr.M500473-JLR200

    Article  CAS  PubMed  Google Scholar 

  51. Krishnamurthy K, Wang G, Rokhfeld D, Bieberich E (2008) Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res 10(6):R106. https://doi.org/10.1186/bcr2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang R, Gong J, Wang H, Wang L (2005) Bile salts inhibit growth and induce apoptosis of culture human normal esophageal mucosal epithelial cells. World J Gastroenterol 11(41):6466–6471. https://doi.org/10.3748/wjg.v11.i41.6466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yui S, Kanamoto R, Saeki T (2008) Deoxycholic acid can induce apoptosis in the human colon cancer cell line HCT116 in the absence of Bax. Nutr Cancer 60(1):91–96. https://doi.org/10.1080/01635580701525893

    Article  CAS  PubMed  Google Scholar 

  54. Alasmael N, Mohan R, Meira LB, Swales KE, Plant NJ (2016) Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential. Cancer Lett 370(2):250–259. https://doi.org/10.1016/j.canlet.2015.10.031

    Article  CAS  PubMed  Google Scholar 

  55. Zimber A, Gespach C (2008) Bile acids and derivatives, their nuclear receptors FXR, PXR and ligands: role in health and disease and their therapeutic potential. Anticancer Agents Med Chem 8(5):540–563

    Article  CAS  Google Scholar 

  56. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571):1313–1316. https://doi.org/10.1126/science.1070477

    Article  CAS  PubMed  Google Scholar 

  57. Staudinger R, Wang X, Bandres JC (2001) Allosteric regulation of CCR5 by guanine nucleotides and HIV-1 envelope. Biochem Biophys Res Commun 286(1):41–47. https://doi.org/10.1006/bbrc.2001.5345

    Article  CAS  PubMed  Google Scholar 

  58. Buscher HP, Beger M, Sauerbier H, Gerok W (1987) Bile salt shift from albumin to high-density lipoprotein in cholestasis. Hepatology 7(5):900–905

    Article  CAS  Google Scholar 

  59. Centuori SM, Martinez JD (2014) Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci 59(10):2367–2380. https://doi.org/10.1007/s10620-014-3190-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD (2018) Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules 8(4):159. https://doi.org/10.3390/biom8040159

    Article  CAS  PubMed Central  Google Scholar 

  61. Craven PA, Pfanstiel J, DeRubertis FR (1987) Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids. J Clin Invest 79(2):532–541. https://doi.org/10.1172/JCI112844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Booth LA, Gilmore IT, Bilton RF (1997) Secondary bile acid induced DNA damage in HT29 cells: are free radicals involved? Free Radic Res 26(2):135–144

    Article  CAS  Google Scholar 

  63. Glinghammar B, Inoue H, Rafter JJ (2002) Deoxycholic acid causes DNA damage in colonic cells with subsequent induction of caspases, COX-2 promoter activity and the transcription factors NF-kB and AP-1. Carcinogenesis 23(5):839–845

    Article  CAS  Google Scholar 

  64. Looby E, Abdel-Latif MM, Athie-Morales V, Duggan S, Long A, Kelleher D (2009) Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells. BMC Cancer 9:190. https://doi.org/10.1186/1471-2407-9-190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Da Silva M, Jaggers GK, Verstraeten SV, Erlejman AG, Fraga CG, Oteiza PI (2012) Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and Akt activation in Caco-2 cells. Free Radical Biol Med 52(1):151–159. https://doi.org/10.1016/j.freeradbiomed.2011.10.436

    Article  CAS  Google Scholar 

  66. Verstraeten SV, Jaggers GK, Fraga CG (1828) Oteiza PI (2013) Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol. Biochim Biophys Acta 11:2646–2653. https://doi.org/10.1016/j.bbamem.2013.07.023

    Article  CAS  Google Scholar 

  67. Eisinger J, Flores J (1983) Cytosol-membrane interface of human erythrocytes: a resonance energy transfer study. Biophys J 41(3):367–379. https://doi.org/10.1016/S0006-3495(83)84448-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cabral DJ, Small DM, Lilly HS, Hamilton JA (1987) Transbilayer movement of bile acids in model membranes. Biochemistry 26(7):1801–1804

    Article  CAS  Google Scholar 

  69. Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics (2007). Springer, Newyork

Download references

Funding

MM, DC, SV and LG are Career Investigators of CONICET. CF is supported by a fellowship from the National Interuniversity Council (CIN) and MB and TL are supported by a fellowship from the University of Buenos Aires. Support for these studies was provided by CONICET (PIP-320) and ANPCYT (PICT 2013–937) to LG, and by UBA 20020130200005BA to LG and 20020130100195BA to SV. The funding sources had no involvement in the conduct of the research and/or preparation of the article.

Author information

Authors and Affiliations

Authors

Contributions

YG, LG: conceived or designed study, YG, MB, CF, MB, TL, SV, LG: performed research, YG, CF, MM, DC, SV, LG: analyzed data, MM, DC, SV: contributed with new methods or models, YG, SV, LG: wrote the paper. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Lorena González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5442_MOESM1_ESM.tif

Supplementary file1 (TIF 1138 kb)—Supplementary figure 1.BSs effects over MDA-MB-231 cells resemble those described in the MCF-7 cells. MDA-MB-231 cells were incubated for 24 h in the presence of (A) 0.05-2 mM SC or (B) 0.025-1 mM SDC. After incubation, cell viability was evaluated, and results were expressed as the percentage of the value recorded in untreated control cells. Triplicates were run for each treatment. MDA-MB-231 cells were incubated with 2 mM SC (C) or 1 mM SDC (D) for different time periods (0-24 h), the activation and protein content of Akt, p38 and actin were determined by immunoblotting. Representative western blot are shown. MDA-MB-231 cells were incubated for 24 h in the presence of 2 mM SC or 1 mM SDC and PARP or caspase-3 cleavage analyzed by immunoblotting (E) Actin was used as loading control. Representative western blot are shown. MDA-MB-231 cells were incubated in the presence of 0.01 mM SC (F) or 0.005 mM SDC (G) and Akt activation and cyclin D1 expression were determined by immunoblotting. Representative western blots are shown.

11033_2020_5442_MOESM2_ESM.tif

Supplementary file2 (TIF 266 kb)—Supp. Fig. 2. Chemical structures and properties of the BSs investigated in this work. The optimization of (A) SC and (B) SDC chemical structures was performed by molecular mechanics (MM2) according to [67] using the routines available in ChemBio3D Ultra 11.0.1 (Cambridge Scientific Computing Inc.). (C) BS chemical properties. Pow: octanol/water partition coefficient. S: water solubility. PSA: polar surface area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gándola, Y.B., Fontana, C., Bojorge, M.A. et al. Concentration-dependent effects of sodium cholate and deoxycholate bile salts on breast cancer cells proliferation and survival. Mol Biol Rep 47, 3521–3539 (2020). https://doi.org/10.1007/s11033-020-05442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05442-2

Keywords

Navigation