Skip to main content

Advertisement

Log in

Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

It has amply been documented that mammary tumor cells may exhibit an increased lipogenesis. Biliary acids are currently recognized as signaling molecules in the intestine, in addition to their classical roles in the digestion and absorption of lipids. The aim of our study was to evaluate the impact of lithocholic acid (LCA) on the lipogenesis of breast cancer cells. The putative cytotoxic effects of LCA on these cells were also examined.

Methods

The effects of LCA on breast cancer-derived MCF-7 and MDA-MB-231 cells were studied using MTT viability assays, Annexin-FITC and Akt phosphorylation assays to evaluate anti-proliferative and pro-apoptotic properties, qRT-PCR and Western blotting assays to assess the expression of the bile acid receptor TGR5 and the estrogen receptor ERα, and genes and proteins involved in apoptosis (Bax, Bcl-2, p53) and lipogenesis (SREBP-1c, FASN, ACACA). Intracellular lipid droplets were visualized using Oil Red O staining.

Results

We found that LCA induces TGR5 expression and exhibits anti-proliferative and pro-apoptotic effects in MCF-7 and MDA-MB-231 cells. Also, an increase in pro-apoptotic p53 protein expression and a decrease in anti-apoptotic Bcl-2 protein expression were observed after LCA treatment of MCF-7 cells. In addition, we found that LCA reduced Akt phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells. We also noted that LCA reduced the expression of SREBP-1c, FASN and ACACA in both breast cancer-derived cell lines and that cells treated with LCA contained low numbers of lipid droplets compared to untreated control cells. Finally, a decrease in ERα expression was observed in MCF-7 cells treated with LCA.

Conclusions

Our data suggest a potential therapeutic role of lithocholic acid in breast cancer cells through a reversion of lipid metabolism deregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Robles-Escajeda, U. Das, N.M. Ortega, K. Parra, G. Francia, J.R. Dimmock, A. Varela-Ramirez, R.J. Aguilera, A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell. Oncol. 39, 265–277 (2016)

    Article  CAS  Google Scholar 

  2. R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017)

    Article  CAS  Google Scholar 

  3. S. Beloribi-Djefaflia, S. Vasseur, F. Guillaumond, Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, 1–10 (2016)

    Article  Google Scholar 

  4. J.A. Menendez, R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. J.A. Menendez, R. Lupu, Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis 6, 1–11 (2017)

    Article  Google Scholar 

  6. J.M. Harvey, G.M. Clark, C.K. Osborne, D.C. Allred, Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 17, 1474–1481 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, B. Staels, Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. P.B. Hylemon, H. Zhou, W.M. Pandak, S. Ren, G. Gil, P. Dent, Bile acids as regulatory molecules. J. Lipid. Res. 50, 1509–1520 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. B.W. Katona, S. Anant, D.F. Covey, W.F. Stenson, Characterization of enantiomeric bile acid-induced apoptosis in colon cancer cell lines. J. Biol. Chem. 284, 3354–3564 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A.A. Goldberg, A. Beach, G.F. Davies, T.A. Harkness, A. Leblanc, V.I. Titorenko, Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2, 761–782 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  11. A.A. Goldberg, V.I. Titorenko, A. Beach, J.T. Sanderson, Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. Peer J. 1, e122 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  12. A.A. Goldberg, V.R. Richard, P. Kyryakov, S.D. Bourque, A. Beach, M.T. Burstein, A. Glebov, O. Koupaki, T. Boukh-Viner, C. Gregg, M. Juneau, A.M. English, D.Y. Thomas, V.I. Titorenko, Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging 2, 393–414 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. V. Sepe, B. Renga, C. Festa, C. Finamore, D. Masullo, A. Carino, S. Cipriani, E. Distrutti, S. Fiorucci, A. Zampella, Investigation on bile acid receptor regulators. Discovery of cholanoic acid derivatives with dual G-protein coupled bile acid receptor 1 (GPBAR1) antagonistic and farnesoid X receptor (FXR) modulatory activity. Steroids 105, 59–67 (2015)

    Article  PubMed  Google Scholar 

  14. A. Kawaguchi, H. Tomoda, S. Nozoe, S. Omura, S. Okuda, Mechanism of action of cerulenin on fatty acid synthetase. Effect of cerulenin on iodoacetamide-induced malonyl-CoA decarboxylase activity. J. Biochem. 92, 7–12 (1982)

    CAS  PubMed  Google Scholar 

  15. H. Duboc, Y. Taché, A.F. Hofmann, The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig. Liver Dis. 46, 302–312 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. H. Sato, A. Macchiarulo, C. Thomas, A. Gioiello, M. Une, A.F. Hofmann, R. Saladin, K. Schoonjans, R. Pellicciari, J. Auwerx, Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure−activity relationships, and molecular modeling studies. J. Med. Chem. 51, 1831–1841 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Kawamata, R. Fujii, M. Hosoya, M. Harada, H. Yoshida, M. Miwa, S. Fukusumi, Y. Habata, T. Itoh, Y. Shintani, S. Hinuma, Y. Fujisawa, M. Fujino, A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. T.W. Pols, L.G. Noriega, M. Nomura, J. Auwerx, K. Schoonjans, The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol. 54, 1263–1272 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. J.S. Fridman, S.W. Lowe, Control of apoptosis by p53. Oncogene 22, 9030–9040 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. C.C. Harris, Structure and function of the p53 tumor suppressor gene: Clues for rational cancer therapeutic strategies. J Natl. Cancer Inst. 88, 1442–1455 (1996)

    Article  CAS  PubMed  Google Scholar 

  21. H.A. Giebler, I. Lemasson, J.K. Nyborg, p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation. Mol. Cell Biol. 20, 4849–4858 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Arnould, S. Vankoningsloo, P. Renard, A. Houbion, N. Ninane, C. Demazy, J. Remacle, M. Raes, CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J. 21, 53–63 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Cory, D.C.S. Huang, J.M. Adams, The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590–8607 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Rahimi A, Lee YY, Abdella H, Doerflinger M, Gangoda L, Srivastava R, Xiao K, Ekert PG, Puthalakath H. Role of p53 in cAMP/PKA pathway mediated apoptosis. Apoptosis 18, 1492–1499 (2013)

  25. S.M. Vogel, M.R. Bauer, A.C. Joerger, R. Wilcken, T. Brandt, D.B. Veprintsev, T.J. Rutherford, A.R. Fersht, F.M. Boeckler, Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc. Natl. Acad. Sci. USA 109, 16906–16910 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Yoeli-Lerner, A. Toker, Akt/PKB signaling in cancer: A function in cell motility and invasion. Cell Cycle 5, 603–605 (2006)

    Article  PubMed  Google Scholar 

  27. B.S. Tan, K.H. Tiong, H.L. Choo, F.F. Chung, L.W. Hii, S.H. Tan, I.K. Yap, S. Pani, N.T. Khor, S.F. Wong, R. Rosli, S.K. Cheong, C.O. Leong, Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis. 6, e1826 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C.R. Loehberg, P.L. Strissel, R. Dittrich, R. Strick, J. Dittmer, A. Dittmer, B. Fabry, W.A. Kalender, T. Koch, D.L. Wachter, N. Groh, A. Polier, I. Brandt, L. Lotz, I. Hoffmann, F. Koppitz, S. Oeser, A. Mueller, P.A. Fasching, M.P. Lux, M.W. Beckmann, M.G. Schrauder, Akt and p53 are potential mediators of reduced mammary tumor growth by cloroquine and the mTOR inhibitor RAD001. Biochem. Pharmacol. 83, 480–488 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. A. Astanehe, D. Arenillas, W.W. Wasserman, P.C. Leung, S.E. Dunn, B.R. Davies, G.B. Mills, N. Auersperg, Mechanisms underlying p53 regulation of PIK3CA transcription in ovarian surface epithelium and in ovarian cancer. J. Cell Sci. 121, 664–674 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. M. Agostini, L.Y. Almeida, D.C. Bastos, R.M. Ortega, F.S. Moreira, F. Seguin, K.G. Zecchin, H.F. Raposo, H.C. Oliveira, N.D. Amoêdo, T. Salo, R.D. Coletta, E. Graner, The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas. Mol. Cancer Ther. 13, 585–595 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. B. Corominas-Faja, E. Cuyàs, J. Gumuzio, J. Bosch-Barrera, O. Leis, Á.G. Martin, J.A. Menendez, Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 5, 8306–8316 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  32. R. Singh, V. Yadav, S. Kumar, N. Saini, MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci. Rep. 5, 1–15 (2015)

    Google Scholar 

  33. M. Lu, J.Y. Shyy, Sterol regulatory element-binding protein 1 is negatively modulated by PKA phosphorylation. Am. J. Physiol. Cell Physiol. 290, C1477–C1486 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. T. Yamamoto, H. Shimano, N. Inoue, Y. Nakagawa, T. Matsuzaka, A. Takahashi, N. Yahagi, H. Sone, H. Suzuki, H. Toyoshima, N. Yamada, Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver. J. Biol. Chem. 282, 11687–11695 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. M.A. Welte, Expanding roles for lipid droplets. Curr. Biol. 25, R470–R481 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. P.T. Bozza, J.P. Viola, Lipid droplets in inflammation and cancer. Prostaglandins Leukot. Essent. Fatty Acids 82, 243–250 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. L. Tirinato, C. Liberale, S. Di Franco, P. Candeloro, A. Benfante, R. La Rocca, L. Potze, R. Marotta, R. Ruffilli, V.P. Rajamanickam, M. Malerba, F. De Angelis, A. Falqui, E. Carbone, M. Todaro, J.P. Medema, G. Stassi, E. Di Fabrizio, Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33, 35–44 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. H. Abramczyk, J. Surmacki, M. Kopec, A.K. Olejnik, K. Lubecka-Pietruszewska, K. Fabianowska-Majewska, The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 140, 2224–2235 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. G. Pérez-Tenorio, O. Stal, Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Brit. J. Cancer 86, 540–545 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  40. O. Stal, G. Pérez-Tenorio, L. Akerberg, B. Olsson, B. Nordenskjöld, L. Skoog, L.E. Rutqvist, Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res 5, R37–R44 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Bostner, E. Karlsson, M.J. Pandiyan, H. Westman, L. Skoog, T. Fornander, B. Nordenskjöld, O. Stal, Activation of Akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res. Treat. 137, 397–406 (2013)

    Article  CAS  PubMed  Google Scholar 

  42. R.A. Campbell, P. Bhat-Nakshatri, N.M. Patel, D. Constantinidou, S. Ali, H. Nakshatri, Phosphatidylinositol 3-Kinase/AKT-mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J. Biol. Chem. 276, 9817–9824 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. A. Belkaid, S.R. Duguay, R.J. Ouellette, M.E. Surette, 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells. BMC Cancer 15, 1–14 (2015)

    Article  CAS  Google Scholar 

  44. M.J. Duffy, Estrogen receptors: Role in breast cancer. Crit. Rev. Clin. Lab. Sci. 43, 325–347 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from La Ligue Contre le Cancer de la Charente et de Loire Atlantique. Trang H. Luu was also funded by a research fellowship from the Vietnam Ministry of Education and Training and the Phu Tho Pharmacy College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Nazih.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luu, T.H., Bard, JM., Carbonnelle, D. et al. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol. 41, 13–24 (2018). https://doi.org/10.1007/s13402-017-0353-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0353-5

Keywords

Navigation