Skip to main content

Advertisement

Log in

Crosstalk between MEIS1 and markers of different cell signaling pathways in esophageal squamous cell carcinoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The homeobox transcription factor MEIS1 is involved in cell fate decision, stem cells properties, gastrointestinal (GI) tract development, and progression of several malignancies such as esophageal squamous cell carcinoma (ESCC). Increasing evidences suggest the crosstalk between MEIS1 and cell signaling pathways. Therefore, our aim in present study was to investigate the probable linkage of MEIS1 expression with key genes of different cell signaling pathways in ESCC tumorigenesis, and their correlation with clinicopathological feature of the patients. The gene expression profiling of MEIS1 and different cell signaling genes including SALL4, SIZN1, and HEY1 (stemness state, BMP, and NOTCH signaling pathways, respectively) was performed using quantitative real-time reverse transcription polymerase chain reaction (PCR) in fresh tumoral compared to margin normal tissues of 50 treatment-naive ESCC samples. The mRNA expression of MEIS1/SIZN1, SIZN1/HEY1, and SIZN1/SALL4 were significantly associated to each other (P < 0.05). There were remarkable correlations between concomitant mRNA expression of MEIS1 and SIZN1 in tumors with invasion to adventitia, early stages of tumor progression and poorly differentiated tumors. Moreover, expression of MEIS1 and HEY1 was correlated to each other in primary stages of tumor progression and non-invaded tumors. Expression of MEIS1 was significantly associated with SALL4 in poorly differentiated tumors. Our results indicated that correlation between different cell signaling pathway-related genes may lead to esophageal tumorigenesis. It is illustrated that MEIS1 as a HOX gene has a significant correlation with stemness state, BMP, and NOTCH signaling pathways via the SIZN1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qi Y-J, Chao W-X, Chiu J-F (2012) An overview of esophageal squamous cell carcinoma proteomics. J Proteomics 75(11):3129–3137

    Article  CAS  PubMed  Google Scholar 

  2. Testa U, Castelli G, Pelosi E (2017) Esophageal cancer: genomic and molecular characterization, stem cell compartment and clonal evolution. Medicines 4(3):67

    Article  PubMed Central  CAS  Google Scholar 

  3. Qian J, Fang J-Y (2015) Genetic variations in esophageal cancer. Gastrointest Tumors 2(3):124–130

    Article  CAS  Google Scholar 

  4. Yue Y et al (2017) Gene function analysis and underlying mechanism of esophagus cancer based on microarray gene expression profiling. Oncotarget 8(62):105222

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fu J-H et al (2015) RNA-sequencing based identification of crucial genes for esophageal squamous cell carcinoma. J Cancer Res Ther 11(2):420

    Article  CAS  PubMed  Google Scholar 

  6. Zhu J et al (2017) MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration. BMC Cancer 17(1):176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Torres-Flores J and Jave-Suárez LF (2013) MEIS1 (Meis homeobox 1)

  8. Aksoz M et al (2018) Emerging roles of Meis1 in cardiac regeneration, stem cells and cancer. Curr Drug Targets 19(2):181–190

    Article  CAS  PubMed  Google Scholar 

  9. Song F, Wang H, Wang Y (2017) Myeloid ecotropic viral integration site 1 inhibits cell proliferation, invasion or migration in human gastric cancer. Oncotarget 8(52):90050

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crist RC et al (2011) A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer. PLoS ONE 6(8):e23665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cillo C et al (2001) Homeobox genes in normal and malignant cells. J Cell Physiol 188(2):161–169

    Article  CAS  PubMed  Google Scholar 

  12. Seifert A et al (2015) Role of Hox genes in stem cell differentiation. World J Stem Cells 7(3):583

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mallak AJ et al (2016) Contribution of EVX1 in aggressiveness of esophageal squamous cell carcinoma. Pathol Oncol Res 22(2):341–347

    Article  CAS  PubMed  Google Scholar 

  14. Wang RN et al (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1(1):87–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh A, Morris RJ (2010) The Yin and Yang of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 21(4):299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo X, Wang X-F (2009) Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res 19(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calvo MB et al (2009) Biology of BMP signalling and cancer. Clin Transl Oncol 11(3):126–137

    Article  CAS  Google Scholar 

  18. Attisano L, Wrana JL (2000) Smads as transcriptional co-modulators. Curr Opin Cell Biol 12(2):235–243

    Article  CAS  PubMed  Google Scholar 

  19. Cho G, Lim Y, Golden JA (2009) SUMO interaction motifs in SIZN1 are required for PML-NB localization and for transcriptional activation. J Biol Chem 109:010181

    Google Scholar 

  20. Forghanifard MM, Abbaszadegan MR, Moghbeli M (2019) Role of SIZN1 in esophageal squamous cell carcinoma. Middle East J Cancer 10(1):37–42

    CAS  Google Scholar 

  21. Li H et al (2009) Human ZCCHC12 activates AP-1 and CREB signaling as a transcriptional co-activator. Acta Biochim Biophys Sin 41(7):535–544

    Article  CAS  PubMed  Google Scholar 

  22. Ionescu AM et al (2004) CREB Cooperates with BMP-stimulated Smad signaling to enhance transcription of the Smad6 promoter. J Cell Physiol 198(3):428–440

    Article  CAS  PubMed  Google Scholar 

  23. Xu R-H et al (1996) Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development. Proc Natl Acad Sci 93(2):834–838

    Article  CAS  PubMed  Google Scholar 

  24. Wang O et al (2017) ZCCHC12, a novel oncogene in papillary thyroid cancer. J Cancer Res Clin Oncol 143(9):1679–1686

    Article  CAS  PubMed  Google Scholar 

  25. Forghanifard MM et al (2014) Stemness state regulators SALL4 and SOX2 are involved in progression and invasiveness of esophageal squamous cell carcinoma. Med Oncol 31(4):922

    Article  PubMed  CAS  Google Scholar 

  26. Zhao W, Li Y, Zhang X (2017) Stemness-related markers in cancer. Cancer Transl Med 3(3):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang J (2018) SALL4 as a transcriptional and epigenetic regulator in normal and leukemic hematopoiesis. Biomark Res 6(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang L et al (2017) The stem cell factor SALL4 is an essential transcriptional regulator in mixed lineage leukemia-rearranged leukemogenesis. J Hematol Oncol 10(1):159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. López-Mateo I et al (2016) HEY1 functions are regulated by its phosphorylation at Ser-68. Biosci Rep 36(3):e00343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wöltje K, Jabs M, Fischer A (2015) Serum induces transcription of Hey1 and Hey2 genes by Alk1 but not Notch signaling in endothelial cells. PLoS ONE 10(3):e0120547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yassin ER et al (2009) Dissection of the transformation of primary human hematopoietic cells by the oncogene NUP98-HOXA9. PLoS ONE 4(8):e6719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Villaronga M et al (2010) HEY1 Leu94Met gene polymorphism dramatically modifies its biological functions. Oncogene 29(3):411

    Article  CAS  PubMed  Google Scholar 

  33. Takizawa T et al (2003) Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res 31(19):5723–5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gospodarowicz MK, Brierley JD, Wittekind C (2017) TNM classification of malignant tumours. Wiley, Hoboken

    Google Scholar 

  35. Harvey, A.J. (2019) Overview of cell signaling pathways in cancer. In: predictive biomarkers in oncology. Springer, New York, pp 167–182.

    Google Scholar 

  36. Kabir MH et al (2018) Identification of active signaling pathways by integrating gene expression and protein interaction data. BMC Syst Biol 12(9):120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lambert M et al (2018) Targeting transcription factors for cancer treatment. Molecules 23(6):1479

    Article  PubMed Central  CAS  Google Scholar 

  38. Chen X et al (2018) Identification of key genes and pathways for esophageal squamous cell carcinoma by bioinformatics analysis. Exp Ther Med 16(2):1121–1130

    PubMed  PubMed Central  Google Scholar 

  39. Sanchez-Vega F et al (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell 173(2):321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fischbach NA et al (2005) HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood 105(4):1456–1466

    Article  CAS  PubMed  Google Scholar 

  41. Grier D et al (2005) The pathophysiology of HOX genes and their role in cancer. J Pathol 205(2):154–171

    Article  CAS  PubMed  Google Scholar 

  42. Abbaszadegan MR, Moghbeli M (2018) Role of MAML1 and MEIS1 in esophageal squamous cell carcinoma depth of invasion. Pathol Oncol Res 24(2):245–250

    Article  CAS  PubMed  Google Scholar 

  43. Moghbeli M et al (2016) Correlation between Meis1 and Msi1 in esophageal squamous cell carcinoma. J Gastrointest Cancer 47(3):273–277

    Article  CAS  PubMed  Google Scholar 

  44. Chen JL et al (2012) Deregulation of a Hox protein regulatory network spanning prostate cancer initiation and progression. Clin Cancer Res 18(16):4291–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Orlovsky K et al (2011) Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation. Proc Natl Acad Sci 108(19):7956–7961

    Article  CAS  PubMed  Google Scholar 

  46. Owa T et al (2018) Meis1 coordinates cerebellar granule cell development by regulating Pax6 transcription, BMP signaling and Atoh1 degradation. J Neurosci 38(5):1277–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dalcq J et al (2012) RUNX3, EGR1 and SOX9B form a regulatory cascade required to modulate BMP-signaling during cranial cartilage development in zebrafish. PLoS ONE 7(11):e50140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Erickson T, French CR, Waskiewicz AJ (2010) Meis1 specifies positional information in the retina and tectum to organize the zebrafish visual system. Neural Dev 5(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Li Q-L et al (2012) ZCCHC12, a potential molecular marker of papillary thyroid carcinoma: a preliminary study. Med Oncol 29(3):1409–1417

    Article  CAS  PubMed  Google Scholar 

  50. Bhasin M et al (2005) Prediction of methylated CpGs in DNA sequences using a support vector machine. FEBS Lett 579(20):4302–4308

    Article  CAS  PubMed  Google Scholar 

  51. Rad A et al (2016) Predicting the molecular role of MEIS1 in esophageal squamous cell carcinoma. Tumor Biol 37(2):1715–1725

    Article  CAS  Google Scholar 

  52. Mahmoudian RA et al (2019) MEIS1 knockdown may promote differentiation of esophageal squamous carcinoma cell line KYSE-30. Mol Genet Genomic Med 7:e746

    Article  CAS  Google Scholar 

  53. Xie H et al (2018) MEIS-1 level in unresectable hepatocellular carcinoma can predict the post-treatment outcomes of radiofrequency ablation. Oncotarget 9(20):15252

    Article  PubMed  PubMed Central  Google Scholar 

  54. He J et al (2016) Inhibition of SALL4 reduces tumorigenicity involving epithelial-mesenchymal transition via Wnt/β-catenin pathway in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 35(1):98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Najafi M et al (2017) Crosstalk between SHH and stemness state signaling pathways in esophageal squamous cell carcinoma. J Cell Commun Signal 11(2):147–153

    Article  PubMed  Google Scholar 

  56. Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16(3):251–263

    Article  CAS  PubMed  Google Scholar 

  57. Wang Z et al (2010) GSK-3 promotes conditional association of CREB and its coactivators with MEIS1 to facilitate HOX-mediated transcription and oncogenesis. Cancer Cell 17(6):597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Assarnia S, Ardalan Khales S, Forghanifard MM (2019) Correlation between SALL4 stemness marker and bone morphogenetic protein signaling genes in esophageal squamous cell carcinoma. J Biochem Mol Toxicol 33(3):e22262

    Article  PubMed  CAS  Google Scholar 

  59. Forghanifard MM et al (2019) Role of DIDO1 in progression of esophageal squamous cell carcinoma. J Gastrointest Cancer 53:81

    Google Scholar 

  60. Braig S, Bosserhoff A (2013) Death inducer-obliterator 1 (Dido1) is a BMP target gene and promotes BMP-induced melanoma progression. Oncogene 32(7):837

    Article  CAS  PubMed  Google Scholar 

  61. Forghanifard MM et al (2013) Role of SALL4 in the progression and metastasis of colorectal cancer. J Biomed Sci 20(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang X et al (2015) SALL4: an emerging cancer biomarker and target. Cancer Lett 357(1):55–62

    Article  CAS  PubMed  Google Scholar 

  63. Rad A et al (2016) SOX1 is correlated to stemness state regulator SALL4 through progression and invasiveness of esophageal squamous cell carcinoma. Gene 594(2):171–175

    Article  CAS  PubMed  Google Scholar 

  64. Fukusumi T et al (2018) The NOTCH4–HEY1 pathway induces epithelial–mesenchymal transition in head and neck squamous cell carcinoma. Clin Cancer Res 24(3):619–633

    Article  CAS  PubMed  Google Scholar 

  65. Forghanifard MM, Taleb S, Abbaszadegan MR (2015) Notch signaling target genes are directly correlated to esophageal squamous cell carcinoma tumorigenesis. Pathol Oncol Res 21(2):463–467

    Article  CAS  PubMed  Google Scholar 

  66. Zavadil J et al (2004) Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23(5):1155–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fardi Golyan F, Abbaszadegan MR, Forghanifard MM (2019) TWIST1, MMP-21, and HLAG-1 co-overexpression is associated with ESCC aggressiveness. J Cell Biochem 120:14838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our colleagues at the Human Division of Human Genetics, Immunology Research Institute, Avicenna Research Institute (Mashhad University of Medical Sciences) for their scientific and technical supports.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Forghanifard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Human Ethics Committee of the Mashhad University of Medical Sciences (MUMS) (Mashhad, Iran) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudian, R.A., Forghanifard, M. Crosstalk between MEIS1 and markers of different cell signaling pathways in esophageal squamous cell carcinoma. Mol Biol Rep 47, 3439–3448 (2020). https://doi.org/10.1007/s11033-020-05423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05423-5

Keywords

Navigation