Skip to main content

Advertisement

Log in

Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Global warming has an adverse impact on agriculture and food security is in doldrums around the world. A sharp increase in the temperature of earth is expected and may lead to ~ 1.8–4 °C rise in average earth temperature by the year 2100. Thus, heat stress is a critical factor for plant growth development and crop yield. Chickpea, which is an important leguminous crop and rich source of proteins is also a heat sensitive crop but high temperature exceeding 35 °C inhibit its productivity. Climate-smart agriculture seems to be a plausible approach to minimize the drastic effect of climate change on plant’s adaptation. This may help in better selection of tolerant cultivars of chickpea that can be used in breeding programmes for heat stress tolerance in chickpea. Also the biotechnological approaches using candidate genes expressed in transgenics plants may play pivotal role in the production of climate resilient chickpea plants. Some preliminary findings using CAP2, Galactinol synthase genes, proteomic approaches, RNA seq data, stay green traits and –OMICS in general, have proved to be promising. A close collaboration between agronomists, plant physiologists, geneticists, biotechnologists is the pressing need and must be envisioned in order to address heat stress tolerance in chickpea under the prevailing climatic conditions and continuously increasing temperature. In the context of global heat stress and climate change, adaptation and mitigation are the keywords for employing transdisciplinary methodologies with respect to plant growth, development and agronomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from the Global Temperature Report for 2018—Berkeley Earth and reused according to Creative Commons BY-4.0)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP (2017) The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 36:1009–1025

    Article  CAS  PubMed  Google Scholar 

  2. Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    Article  CAS  Google Scholar 

  3. Berger JD, Milroy SP, Turner NC, Siddique KHM, Imtiaz M, Malhotra R (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180:1–15

    Article  Google Scholar 

  4. Blum A (1988) Plant breeding for stress environments. Boca Raton, CRC Press

    Google Scholar 

  5. Cao YY, Duan H, Yang LN, Wang ZQ, Zhou SC, Yang JC (2008) Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agron Sin 34:2134–2142

    Article  Google Scholar 

  6. Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986) The influence of temperature on seed germination rate in grain legumes I. A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. J Exp Bot 37:705–715

    Article  Google Scholar 

  7. Craig DW et al (2008) Identification of genetic variants using barcoded multiplexed sequencing. Nat Methods 5:887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deschamps S, Nannapaneni K, Zhang Y, Hayes K (2012) Local assemblies of paired end reduced representation libraries sequenced with the illumina genome analyser in maize. Int J Plant Genomics. https://doi.org/10.1155/2012/360598

    Article  PubMed  PubMed Central  Google Scholar 

  9. Devasirvatham V (2012) The basis of chickpea heat tolerance under semi–arid environments. PhD thesis, The University of Sydney, NSW, Australia.

  10. Devasirvatham V, Tan DK, Trethowan RM (2016) Breeding strategies for enhanced plant tolerance to heat stress. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer International Publishing, Cham, pp 447–469

    Chapter  Google Scholar 

  11. Dua RP (2001) Genotypic variations for low and high temperature tolerance in gram (Cicer arietinum). Indian J Agric Sci 71:561–566

    Google Scholar 

  12. Ellis RH, Covell S, Roberts EH, Summerfield RJ (1986) The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. J Exp Bot 183:1503–1515

    Article  Google Scholar 

  13. Elshire RJ et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Epstein E, Rush JD, Kigsbury RW, Kelley DB, Cinnigham GA, Wrono AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  15. Feller U (2016) Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. J Plant Physiol 203:84–94

    Article  CAS  PubMed  Google Scholar 

  16. Gaur PM, Jukanti AK, Samineni S, Chaturvedi SK, Basu PS, Babbar A et al (2013) Climate change and heat stress tolerance in chickpea. Climate Change and Plant Abiotic Stress, Tolerance, pp 837–856

    Google Scholar 

  17. Gaur PM, Krishnamurthy L, Kashiwagi J (2008) Improving drought-avoidance root traits in chickpea (Cicer arietinum L.)-current status of research at ICRISAT. Plant Prod Sci 11:3–11

    Article  Google Scholar 

  18. Gous PW, Hickey L, Christopher JT, Franckowiak J, Fox GP (2016) Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica 207:305–317

    Article  CAS  Google Scholar 

  19. Global Temperature Report for 2018—Berkeley Earth (https://berkeleyearth.org/2018-temperatures/).

  20. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D et al (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  22. Havaux M et al (1996) Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ 19(12):1359–1368. https://doi.org/10.1111/j.1365-3040.1996.tb00014.x

    Article  CAS  Google Scholar 

  23. Hay RKM, Porter JR (2006) The physiology of crop yield, 2nd edn. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  24. Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris HJC (eds) Abiotic stresses—plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 277–300

    Google Scholar 

  25. IPCC (2007) The synthesis report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  26. IPCC (2014) IPCC WGII AR5 Summary for Policymakers Climate Change 2014: Impacts, Adaptation, and Vulnerability.

  27. Jha UC, Bohra A (2014) Singh NP (2014) Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  28. Jones PD, New M, Parker DE, Mortin S, Rigor IG (1999) Surface area temperature and its change over the past 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  29. Kalaji et al. (2017) https://www.crcpress.com/Chlorophyll-Fluorescence-Understanding-Crop-Performance-Basics-and/Kalaji-Goltsev-Zuk-Golaszewska-Zivcak-Brestic/p/book/9781498764490

  30. Kamal NM, Gorafi YSA, Abdelrahman M, Abdellatef E, Tsujimoto H (2019) Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int J Mol Sci 20:5837

    Article  CAS  PubMed Central  Google Scholar 

  31. Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H (2011) Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plant 17:203–213

    Article  CAS  Google Scholar 

  32. Knutti R, Rogelj J, Sedlacek J, Fischer EM (2016) A scientific critique of the two-degree climate change target. Nat Geosci 9:13–19

    Article  CAS  Google Scholar 

  33. Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress-Contribution of proteomics studies to understanding plant stress response. J Proteom 74:1301–1322

    Article  CAS  Google Scholar 

  34. Krishnamurthy L, Gaur PM, Basu PS, Chaturvedi SK, Tripathi S, Vadez V, Rathore A, Varshney RK, Gowda CLL (2011) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genetic Resources 9:59–69

    Article  Google Scholar 

  35. Kudapa H, Agarwal G, Chitikineni A, Gaur PM, Krishnamurthy L, Varshney RK (2017) Mining for heat stress responsive genes by RNA-Seq based comprehensive gene expression analyses in chickpea (Cicer arietinum L.), workshop, page 87, www.oar.icrisat.org/10256/

  36. Kumar S, Gupta D, Nayyar H (2012) Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiol Plant 34:75–86

    Article  CAS  Google Scholar 

  37. Kumar S, Kumari P, Kumar U, Grover M, Singh AK, Rakesh S, Sengar RS (2013) Molecular approaches for designing heat tolerant wheat. J Plant Biochem Biotechnol 22:359–371

    Article  CAS  Google Scholar 

  38. Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semi-arid environments. Adv Agron 72:107–138

    Article  CAS  Google Scholar 

  39. Kumar S, Thakur P, Kaushal N, Malik JA, Gaur P, Nayyar H (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59:823–843

    Article  CAS  Google Scholar 

  40. Kumari P, Singh S, Yadav S (2018) Analysis of thermotolerance behaviour of five chickpea genotypes at early growth stages. Braz J Bot 41(3):551–565

    Article  Google Scholar 

  41. Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signalling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Z, Long R, Zhang T et al (2016) Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L. Mol Biol Rep 43:815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lobell DB, Schlenker W, Costa-Roberts J (1980) Climate trends and global crop production since. Science 333:616–620.Maqbool MA, Aslam M, Ali H (2017) Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breed 136:300–318

    Google Scholar 

  45. Mitra R, Bhatia CR (2008) Bioenergetic cost of heat tolerance in wheat crop. Curr Sci 94:1049–1053

    CAS  Google Scholar 

  46. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  47. Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44:75–80

    Article  CAS  PubMed  Google Scholar 

  48. Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Not Sci Biol 2:51–56

    Article  Google Scholar 

  49. Nakano M, Yamada T, Masuda Y, Sato Y, Kobayashi H, Ueda H, Morita R, Nishimura M, Kitamura K, Kusaba M (2014) A Green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean. Plant Cell Physiol 55:1763–1771

    Article  CAS  PubMed  Google Scholar 

  50. Ogweno JO, Song XS, Hu WH, Shi K, Zhou YH, Yu JQ (2009) Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress. Sci Hort 123:17–22

    Article  CAS  Google Scholar 

  51. Panigrahy M, Neelamraju S, Nageswara D, Ramanan RR (2011) Heat tolerance in rice mutants is associated with reduced accumulation of reactive oxygen species. Biol Plant 55:721

    Article  CAS  Google Scholar 

  52. Paul PJ, Samineni S, Thudi SSB, Rathore A, Das RR, Khan AW, Chaturvedi SK, Lavanya GR, Varshney RK et al (2018) Molecular mapping of QTLs for heat tolerance in chickpea. Int J Mol Sci 19:2166

    Article  PubMed Central  CAS  Google Scholar 

  53. Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL (2012) Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int J Pharm Phytopharmacol Res 1:194–202

    CAS  Google Scholar 

  54. Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KH, Colmer TD, Turner NC, Varshney RK, Vadez V (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2× JG 11 derived chickpea (Cicer arietinum L) recombinant inbred lines. BMC Plant Biol 15:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rai KK, Rai N, Rai SP (2018) Response of Lablab purpureus L. to high temperature stress and role of exogenous protectants in mitigating high temperature induced oxidative damages. Mol Biol Rep 45:1375–1395. https://doi.org/10.1007/s11033-018-4301-x

    Article  CAS  PubMed  Google Scholar 

  56. Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P et al (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163:1609–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Salvi P, Kamble NU, Majee M (2018) Stress-Inducible Galactinol Synthase of Chickpea (CaGolS) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation. Plant Cell Physiol 59:155–166. https://doi.org/10.1093/pcp/pcx170

    Article  CAS  PubMed  Google Scholar 

  59. Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Gaur PM, Pande S, Singh S, Kaur L et al (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121–133

    Article  Google Scholar 

  60. Santisree P, Bhatnagar-Mathur P, Sharma KK (2017) Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea. Environ Exp Bot 141:132–144. https://doi.org/10.1016/j.envexpbot.2017.07.007

    Article  CAS  Google Scholar 

  61. Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA 104:14169–14174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Semenov MA, Halford NG (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot 60:2791–2804

    Article  CAS  PubMed  Google Scholar 

  63. Shukla RK, Tripathi V, Jain D, Yadav RK, Chattopadhyay D (2009) CAP2 enhances germination of transgenic tobacco seeds at high temperature and promotes heat stress tolerance in yeast. FEBS J 276:5252–5262

    Article  CAS  PubMed  Google Scholar 

  64. Srinivasan A, Takeda H, Senboku T (1996) Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica 88:35–45

    Article  Google Scholar 

  65. Summerfield RJ, Virmani SM, Roberts EH, Ellis RH (1990) Adaptation of chickpea to agroclimatic constraints. In ‘Chickpea in the Nineties’. (Eds. HA van Rheenen, MC Saxena) Proc. of the Second International Workshop on Chickpea Improvement. 4–8th Dec. 1989. ICRISAT, Hyderabad, India. pp. 50–61. (ICRISAT Publishing, India).

  66. Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51(1):329–337

    Article  CAS  PubMed  Google Scholar 

  67. Thomas H, Ougham H (2014) The stay-green trait. J Exp Bot 65:3889–3900

    Article  CAS  PubMed  Google Scholar 

  68. Tubiello FN, Soussana JF, Howden SM (2007) Crop and pasture response to climate change. Proc Nat Acad Sci USA 104:19686–19690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Toker C, Canci H (2006) Selection for drought and heat resistance in chickpea under terminal drought conditions. In: Kharkwal MC (ed) Food legumes for nutritional security and sustainable agriculture. 4th International Food Legumes Research Conference. Indian Agricultural Research Institute, New Delhi, pp 18–22

    Google Scholar 

  70. Toker C, Llunch C, Tejera NA, Serraj R, Siddique KHM (2007) Abiotic stresses. In: Yadav SS, Redden RJ, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 474–496

    Chapter  Google Scholar 

  71. Torabi B, Soltani E, Archontoulis SV, Rabii A (2016) Temperature and water potential effects on Carthamus tinctorius L. seed germination: measurements and modeling using hydrothermal and multiplicative approaches. Braz J Bot 39:427–436

    Article  Google Scholar 

  72. Upadhyaya HD, Dronavalli N, Gowda CLL, Singh S (2011) Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Sci 51:2079–2094

    Article  Google Scholar 

  73. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  74. Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  75. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  76. Wang J, Cui L, Wang Y, Li J (2009) Growth Lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:237–242

    Article  CAS  Google Scholar 

  77. Wery J, Turc O, Lecoeur J (1993) Mechanism of resistance to cold, heat and drought in cool-season legumes, with special reference to chickpea and pea. In: Singh KB, Saxena MC (eds) Food legumes. Wiley Publishing, Chichester, pp 271–291

    Google Scholar 

  78. Yang X, Chen X, Ge Q, Li B, Tong Y, Zhang A, Li Z, Kuang T, Lu C (2006) Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci 171:389–397

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pragati Kumari or Saurabh Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Rastogi, A. & Yadav, S. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea. Mol Biol Rep 47, 4659–4670 (2020). https://doi.org/10.1007/s11033-020-05358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05358-x

Keywords

Navigation