Skip to main content
Log in

Metabolic engineering of Pichia pastoris GS115 for enhanced pentose phosphate pathway (PPP) flux toward recombinant human interferon gamma (hIFN-γ) production

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In the present study, the effects of individual as well as multiple genes of pentose phosphate pathway (PPP) on human interferon gamma (hIFN-γ) production were analyzed. With overexpression of 6-phosphogluconate dehydrogenase (GND2), 1.9-fold increase in hIFN-γ was achieved, while synergetic effect of 6-phosphogluconolactonase (SOL3) and d-ribulose-5-phosphate 3-epimerase (RPE1) resulted in 2.56-fold increase in hIFN-γ as compared to control. Fed batch fermentation using mixed feeding of gluconate and methanol (carbon source) was carried out, resulting in 80 and 123 mg L−1 of hIFN-γ enhancement in recombinant Pichia GS115 strain encoding codon optimized hIFN-γ (GS115/hIFN-γ) and Pichia GS115 strain encoding codon optimized hIFN-γ with co-expressed 6-phosphogluconolactonase(SOL3) and d-ribulose-5-phosphate 3-epimerase (RPE1) (GS115/hIFN-γ/SR) respectively. To get more insight of the flux distribution towards hIFN-γ, studies were carried out by applying flux balance analysis during methanol fed batch phase for both strains. In both strains (GS115/hIFN-γ and GS115/hIFN-γ/SR) more than 95% of formaldehyde flux is directed towards assimilatory pathway. The analysis revealed that with the overexpression of SOL3 and RPE1 the flux towards PPP triggering the alleviation in hIFN-γ production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vogl T, Hartner FS, Glieder A (2013) New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris. Curr Opin Biotechnol 24(6):1094–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meehl MA, Stadheim TA (2014) Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 30:120–127

    Article  CAS  PubMed  Google Scholar 

  3. Potvin G, Ahmad A, Zhang Z (2012) Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochem Eng J 64:91–105

    Article  CAS  Google Scholar 

  4. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris. Appl Microbiol Biotechnol 98(12):5301–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Looser V et al (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33(6):1177–1193

    Article  CAS  PubMed  Google Scholar 

  6. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast Chichester Engl 22(4):249–270

    Article  CAS  Google Scholar 

  7. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66

    Article  CAS  PubMed  Google Scholar 

  8. Prabhu AA, Bharali B, Singh AK, Allaka M, Sukumar P, Veeranki VD (2018) Engineering folding mechanism through Hsp70 and Hsp40 chaperones for enhancing the production of recombinant human interferon gamma (rhIFN-γ) in Pichia pastoris cell factory. Chem Eng Sci 181:58–67

    Article  CAS  Google Scholar 

  9. Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34(8):652–664

    Article  CAS  PubMed  Google Scholar 

  10. Prabhu AA, Boro B, Bharali B, Chakraborty S, Dasu VV (2018) Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris. Curr Pharm Biotechnol 18(15):1200–1223

    Article  CAS  Google Scholar 

  11. Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13(2):247–261

    Article  CAS  PubMed  Google Scholar 

  12. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: the principal factor in the ‘metabolic burden’ associated with recombinant bacteria. Biotechnol Bioeng 35(7):668–681

    Article  CAS  PubMed  Google Scholar 

  13. Heyland J, Fu J, Blank LM, Schmid A (2010) Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng 107(2):357–368

    Article  CAS  PubMed  Google Scholar 

  14. Dragosits M et al (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8(3):1380–1392

    Article  CAS  PubMed  Google Scholar 

  15. Kim HU, Kim TY, Lee SY (2008) Metabolic flux analysis and metabolic engineering of microorganisms. Mol Biosyst 4(2):113–120

    Article  PubMed  Google Scholar 

  16. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10(4):435–449

    Article  CAS  PubMed  Google Scholar 

  18. Toya Y, Kono N, Arakawa K, Tomita M (2011) Metabolic flux analysis and visualization. J Proteome Res 10(8):3313–3323

    Article  CAS  PubMed  Google Scholar 

  19. Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42(3):317–325

    Article  CAS  PubMed  Google Scholar 

  20. Nocon J et al (2014) Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng 24:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nocon J et al (2016) Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris. Appl Microbiol Biotechnol 100:5955–5963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prielhofer R et al (2015) Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genom 16:167

    Article  CAS  Google Scholar 

  23. Prabhu AA, Veeranki VD, Dsilva SJ (2016) Improving the production of human interferon gamma (hIFN-γ) in Pichia pastoris cell factory: an approach of cell level. Process Biochem 51(6):709–718

    Article  CAS  Google Scholar 

  24. Prabhu AA, Mandal B, Dasu VV (2017) Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: a statistical optimization and neural network-based approach. Korean J Chem Eng 34(4):1109–1121

    Article  CAS  Google Scholar 

  25. Wang P et al (2017) Accurate analysis of fusion expression of Pichia pastoris glycosylphosphatidylinositol-modified cell wall proteins. J Ind Microbiol Biotechnol 44(9):1355–1365.

    Article  CAS  PubMed  Google Scholar 

  26. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14(5):491–496

    Article  CAS  PubMed  Google Scholar 

  27. Çelik E, Çalık P, Oliver SG (2010) Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate. Biotechnol Bioeng 105(2):317–329

    Article  PubMed  CAS  Google Scholar 

  28. Förster J, Famili I, Fu P, Palsson B, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. De Schutter K et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27(6):561–566

    Article  PubMed  CAS  Google Scholar 

  30. Fiaux J, Çakar ZP, Sonderegger M, Wüthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2(1):170–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solà A, Maaheimo H, Ylönen K, Ferrer P, Szyperski T (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem 271(12):2462–2470

    Article  PubMed  CAS  Google Scholar 

  32. Prabhu AA, Purkayastha A, Mandal B, Kumar JP, Mandal BB, Dasu VV (2017) A novel reverse micellar purification strategy for histidine tagged human interferon gamma (hIFN-γ) protein from Pichia pastoris. Int J Biol Macromol 107:2512–2524

    Article  PubMed  CAS  Google Scholar 

  33. Prabhu AA, Dasu VV (2017) Dual-substrate inhibition kinetic studies for recombinant human interferon gamma producing Pichia pastoris. Prep Biochem Biotechnol 47(10):953–962

    Article  CAS  PubMed  Google Scholar 

  34. A AP, Chityala S, Garg Y, Dasu VV (2017) Reverse micellar extraction of papain with cationic detergent based system: an optimization approach. Prep Biochem Biotechnol 47(3):236–244

    Article  CAS  Google Scholar 

  35. Wells E, Robinson AS (2017) Cellular engineering for therapeutic protein production: product quality, host modification, and process improvement. Biotechnol J 12(1):1600105

    Article  CAS  Google Scholar 

  36. Zubay GL, Atkinson DE (1988) Biochemistry. Macmillan, Collier Macmillan, New York

    Google Scholar 

  37. Zampar GG et al (2013) Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol Syst Biol 9:651

    Article  PubMed  PubMed Central  Google Scholar 

  38. Castelli LM et al (2011) Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Mol Biol Cell 22(18):3379–3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rebnegger A et al (2014) In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response. Biotechnol J 9(4):511–525

    Article  CAS  PubMed  Google Scholar 

  40. Stratton J, Chiruvolu V, Meagher M (1998) High cell-density fermentation. Methods Mol Biol Clifton NJ. 103:107–120

    CAS  Google Scholar 

  41. Zhang W, Inan M, Meagher MM (2000) Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris. Biotechnol Bioprocess Eng 5(4):275–287

    Article  CAS  Google Scholar 

  42. Celik E, Calik P, Oliver SG (2009) Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast Chichester Engl 26(9):473–484

    Article  CAS  Google Scholar 

  43. Çalık P et al (2010) Fermentation and oxygen transfer characteristics in recombinant human growth hormone production by Pichia pastoris in sorbitol batch and methanol fed-batch operation. J Chem Technol Biotechnol 85(2):226–233

    Article  CAS  Google Scholar 

  44. Soyaslan E, Çalık P (2011) Enhanced recombinant human erythropoietin production by Pichia pastoris in methanol fed-batch/sorbitol batch fermentation through pH optimization. Biochem Eng J 55(1):59–65

    Article  CAS  Google Scholar 

  45. Çalık P et al (2013) Effect of co-substrate sorbitol different feeding strategies on human growth hormone production by recombinant Pichia pastoris. J Chem Technol Biotechnol 88(9):1631–1640

    Article  CAS  Google Scholar 

  46. Inan M, Meagher MM (2001) The effect of ethanol and acetate on protein expression in Pichia pastoris. J Biosci Bioeng 92(4):337–341

    Article  CAS  PubMed  Google Scholar 

  47. Solà A, Jouhten P, Maaheimo H, Sánchez-Ferrando F, Szyperski T, Ferrer P (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153:281–90

    Article  PubMed  CAS  Google Scholar 

  48. Çelik Eda, Çalık Pınar, Oliver Stephen G (2010) Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate. Biotechnol Bioeng 105:317–329

    Article  PubMed  CAS  Google Scholar 

  49. Werten MW, van den Bosch TJ, Wind RD, Mooibroek H, de Wolf FA (1999) High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast Chichester Engl 15(11):1087–1096

    Article  CAS  Google Scholar 

  50. Kang HA et al (2000) Proteolytic stability of recombinant human serum albumin secreted in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(5):575–582

    Article  CAS  PubMed  Google Scholar 

  51. Muthuraj M, Palabhanvi B, Misra S, Kumar V, Sivalingavasu K, Das D (2013) Flux balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions. Photosynth Res 118(1–2):167–179

    Article  CAS  PubMed  Google Scholar 

  52. Hirasawa T, Shimizu H (2016) Recent advances in amino acid production by microbial cells. Curr Opin Biotechnol 42:133–146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Indian Institute of Technology Guwahati, Guwahati, Assam, India for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Dasu Veeranki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, A.A., Veeranki, V.D. Metabolic engineering of Pichia pastoris GS115 for enhanced pentose phosphate pathway (PPP) flux toward recombinant human interferon gamma (hIFN-γ) production. Mol Biol Rep 45, 961–972 (2018). https://doi.org/10.1007/s11033-018-4244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4244-2

Keywords

Navigation