Skip to main content
Log in

Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sites of 45S rDNA of Lolium are regions denominated fragile sites (FSs), constituting regions slightly stained with DAPI due to increased DNA unpacking in metaphasic chromosomes. Considered to be fragile regions in the genome, the FSs might be more responsive to induced breaks and result in chromosomal fragments and rearrangements, unless repairing mechanisms such as recombination or de novo telomere formation play a role at the break site of the DNA. Thus, this study aimed at investigating if SFs from Lolium are hotspots for the occurrence of breakages induced by X-ray and if they are regions favorable to synthesize new telomeres, using Hordeum vulgare as a comparative model. Lolium multiflorum and H. vulgare seedlings were irradiated with 20 and 50 Gy X-ray and evaluated one day following the irradiation and at 7-days intervals for a 28-days period, using FISH technique with 45S rDNA and Arabidopsis-type telomere probes in order to investigate the presence of chromosomal breakages and new telomere formation. H. vulgare did not survive after a few days of irradiation due to the increased rate of abnormalities. L. multiflorum also exhibited chromosomal abnormalities following the exposure, yet over the 28-days trial it had a decrease in the chromosomal damage rate and formation of de novo telomere has not been detected along this time. Despite being considered to be fragile regions in the genome, the 45S rDNA sites of Lolium are not hotspots to chromosomal breakages after the induction of breakages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gospodinov A, Herceg Z (2013) Chromatin structure in double strand break repair. DNA Repair 12(10):800–810. doi:10.1016/j.dnarep.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  2. Schubert I, Pecinka A, Meister A, Schubert V, Klatte M, Jovtchev G (2004) DNA damage processing and aberration formation in plants. Cytogenet Genome Res 104(1–4):104–108. doi:10.1159/000077473

    Article  CAS  PubMed  Google Scholar 

  3. Tsujimoto H, Usami N, Hasegawa K, Yamada T, Nagaki K, Sasakuma T (1999) De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes. Mol Genet Genom 262(4–5):851–856

    Article  CAS  Google Scholar 

  4. Manova VI, Stoilov LM (2003) Induction and recovery of double-strand breaks in barley ribosomal DNA. DNA Repair 2(9):983–990. doi:10.1016/S1568-7864(03)00095-8

    Article  CAS  PubMed  Google Scholar 

  5. Balasubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci USA 95(17):9738–9743. doi:10.1073/pnas.95.17.9738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cannan WJ, Pederson DS (2016) Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol 231(1):3–14. doi:10.1002/jcp.25048

    Article  CAS  PubMed  Google Scholar 

  7. Slijepcevic P, Bryant PE (1998) Chromosome healing, telomere capture and mechanisms of radiation-induced chromosome breakage. Int J Radiat Biol 73(1):1–13. doi:10.1080/095530098142653

    Article  CAS  PubMed  Google Scholar 

  8. Friebe B, Kynast RG, Zhang P, Qi L, Dhar M, Gill BS (2001) Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Res 9(2):137–146

    Article  CAS  PubMed  Google Scholar 

  9. Berardinelli F, Antoccia A, Buonsante R, Gerardi S, Cherubini R, Nadal VD, Tanzarella C, Sgura A (2013) The role of telomere length modulation in delayed chromosome instability induced by ionizing radiation in human primary fibroblasts. Environ Mol Mutagen 54(3):172–179. doi:10.1002/em.21761

    Article  CAS  PubMed  Google Scholar 

  10. Lavelle C, Foray N (2014) Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology. Int J Biochem Cell Biol 49:84–97. doi:10.1016/j.biocel.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  11. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23(5):687–696. doi:10.1093/carcin/23.5.687

    Article  CAS  PubMed  Google Scholar 

  12. Langerak P, Russell P (2011) Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philos Trans R Soc Lond B 366(1584):3562–3571. doi:10.1098/rstb.2011.0070

    Article  CAS  Google Scholar 

  13. Lamb JC, Shakirov EV, Shippen DE (2012) Plant telomeres. In: Bass H, Birchler JA (eds) Plant cytogenetics. Springer, New York, pp 143–191

    Chapter  Google Scholar 

  14. Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. Springer, Vienna

    Book  Google Scholar 

  15. Melek M, Shippen DE (1996) Chromosome healing: spontaneous and programmed de novo telomere formation by telomerase. BioEssays 18(4):301–308. doi:10.1002/bies.950180408

    Article  CAS  PubMed  Google Scholar 

  16. Murnane JP (2012) Telomere dysfunction and chromosome instability. Mutat Res 730(1-2):28–36. doi:10.1016/j.mrfmmm.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  17. Ribeyre C, Shore D (2013) Regulation of telomere addition at DNA double-strand breaks. Chromosoma 122(3):159–173. doi:10.1007/s00412-013-0404-2

    Article  CAS  PubMed  Google Scholar 

  18. Bose P, Hermetz KE, Conneely KN, Rudd MK (2014) Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS One. doi:10.1371/journal.pone.0101607

    Google Scholar 

  19. Schubert I, Rieger R, Fuchs J, Pich U (1994) Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba). Mutat Res 325:1–5. doi:10.1016/0165-7992(94)90020-5

    Article  CAS  PubMed  Google Scholar 

  20. Huang J, Ma L, Yang F, Fei S, Li L (2008) 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp. PLoS One 3(5):e2167. doi:10.1371/journal.pone.0002167

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang J, Ma L, Sundararajan S, Fei S, Li L (2009) Visualization by atomic force microscopy and FISH of the 45S rDNA gaps in mitotic chromosomes of Lolium perenne. Protoplasma 236:59–65. doi:10.1007/s00709-009-0051-x

    Article  CAS  PubMed  Google Scholar 

  22. Bustamante FO, Rocha LC, Torres GA, Davide LC, Mittelmann A, Techio VH (2015) Distribution of rDNA in diploid and polyploidy Lolium multiflorum Lam. and fragile sites in 45S rDNA regions. Crop Sci 54(2):617–625. doi:10.2135/cropsci2013.05.0325

    Article  Google Scholar 

  23. Rocha LC, Bustamante FO, Silveira RAD, Torres GA, Mittelmann A, Techio VH (2015) Functional repetitive sequences and fragile sites in chromosomes of Lolium perenne L. Protoplasma 252(2):451–460. doi:10.1007/s00709-014-0690-4

    Article  PubMed  Google Scholar 

  24. Rocha LC, Jankowska M, Fuchs J, Mittelmann A, Techio VH, Houben A (2016) Decondensation of chromosomal 45S rDNA sites in Lolium and Festuca genotypes does not result in karyotype instability. Protoplasma. doi:10.1007/s00709-016-0942-6

    Google Scholar 

  25. Aliyeva-Schnorr L, Ma L, Houben A (2015) A fast air-dry dropping chromosome preparation method suitable for FISH in plants. J Vis Exp. doi:10.3791/53470

    PubMed  Google Scholar 

  26. Ma L, Vu GT, Schubert V, Watanabe K, Stein N, Houben A, Schubert I (2010) Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Res 18(7):841–850. doi:10.1007/s10577-010-9166-3

    Article  CAS  PubMed  Google Scholar 

  27. Waterworth WM, Drury GE, Bray CM, West CE (2011) Repairing breaks in the plant genome: the importance of keeping it together. New Phytol 192(4):805–822. doi:10.1111/j.1469-8137.2011.03926.x

    Article  CAS  PubMed  Google Scholar 

  28. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12(9):440–450. doi:10.1016/j.molmed.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  29. Goodhead DT (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 65:7–17. doi:10.1080/09553009414550021

    Article  CAS  PubMed  Google Scholar 

  30. Nikjoo H, Uehara S, Wilson WE, Hoshi M, Goodhead DT (1998) Track structure in radiation biology: theory and applications. Int J Radiat Biol 73:355–364. doi:10.1080/095530098142176

    Article  CAS  PubMed  Google Scholar 

  31. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100:5057–5062. doi:10.1073/pnas.0830918100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jankowska M, Fuchs J, Klocke E, Fojtová M, Polanská P, Fajkus J, Schubert V, Houben A (2015) Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 124(4):519–528. doi:10.1007/s00412-015-0524-y

    Article  PubMed  Google Scholar 

  33. Nikitaki Z, Georgakilas AG, Ravanat JL (2015) Stress-induced DNA damage biomarkers: applications and limitations. Front Chem 3:35. doi:10.3389/fchem.2015.00035

    Article  PubMed  PubMed Central  Google Scholar 

  34. Foltánková V, Legartová S, Kozubek S, Hofer M, Bártová E (2013) DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene 522(2):156–167. doi:10.1016/j.gene.2013.03.108

    Article  PubMed  Google Scholar 

  35. Kobayashi T (2011) Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci 68(8):1395–1403. doi:10.1007/s00018-010-0613-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guerra M (2012) Cytotaxonomy: the end of childhood. Plant Biosyst 146:703–710. doi:10.1080/11263504.2012.717973

    Google Scholar 

  37. Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–696. doi:10.1126/science.1179044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Evelyn Klocke (Institute for Breeding Research and Horticultural Crops, Quedlinburg, Germany) for inducing the irradiation, to National Council of Scientific and Technological Development—CNPq, to Foundation for Research Support of Minas Gerais—FAPEMIG, and to Coordination for the Improvement of Higher Education Personnel—CAPES for the financial supporting and scholarship provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Houben or Vânia Helena Techio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, L.C., Mittelmann, A., Houben, A. et al. Fragile sites of 45S rDNA of Lolium multiflorum are not hotspots for chromosomal breakages induced by X-ray. Mol Biol Rep 43, 659–665 (2016). https://doi.org/10.1007/s11033-016-4003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4003-1

Keywords

Navigation