Skip to main content
Log in

Quantitative method for in vitro matrigel invasiveness measurement through image analysis software

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The determination of cell invasion by matrigel assay is usually evaluated by counting cells able to pass through a porous membrane and attach themselves to the other side, or by an indirect quantification of eluted specific cell staining dye by means of optical density measurement. This paper describes a quantitative analytical imaging approach for determining the invasiveness of tumor cells using a simple method, based on images processing with the public domain software, ImageJ. Images obtained by direct capture are split into the red channel, and the generated image is used to measure the area that cells cover in the picture. To overcome the several disadvantages that classical cell invasion determinations present, we propose this method because it generates more accurate and sensitive determinations, and it could be a reasonable option for improving the quality of the results. The cost-effective alternative method proposed is based on this simple and robust software that is worldwide affordable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Elliott RL, Blobe GC (2005) Role of transforming growth factor Beta in human cancer. J Clin Oncol 23:2078–2093

    Article  CAS  PubMed  Google Scholar 

  2. Onishi M, Ichikawa T, Kurozumi K, Date I (2011) Angiogenesis and invasion in glioma. Brain Tumor Pathol 28:13–24

    Article  CAS  PubMed  Google Scholar 

  3. Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M (2005) Cell migration and invasion assays. Methods 37:208–215

    Article  CAS  PubMed  Google Scholar 

  4. Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4:342–359

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sieuwerts AM, Klijn JG, Foekens JA (1997) Assessment of the invasive potential of human gynecological tumor cell lines with the in vitro Boyden chamber assay: influences of the ability of cells to migrate through the filter membrane. Clin Exp Metastasis 15:53–62

    Article  CAS  PubMed  Google Scholar 

  6. Muir D, Sukhu L, Johnson J, Lahorra MA, Maria BL (1993) Quantitative methods for scoring cell migration and invasion in filter-based assays. Anal Biochem 215:104–109

    Article  CAS  PubMed  Google Scholar 

  7. Li YH, Zhu C (1999) A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clin Exp Metastasis 17:423–429

    Article  CAS  PubMed  Google Scholar 

  8. Terranova VP, Hujanen ES, Loeb DM, Martin GR, Thornburg L, Glushko V (1986) Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc Natl Acad Sci USA 83:465–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245

    CAS  PubMed  Google Scholar 

  10. Hulkower KI, Herber RL (2011) Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3:107–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kirilova A, Lockwood G, Choi P, Bana N, Haider MA, Brock KK, Eccles C, Dawson LA (2008) Three-dimensional motion of liver tumors using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys 71:1189–1195

    Article  PubMed  Google Scholar 

  12. Cassola VF, Lima VJ, Kramer R, Khoury HJ (2010) FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy. Phys Med Biol 55:133–162

    Article  CAS  PubMed  Google Scholar 

  13. Prasad K, Prabhu GK (2012) Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research—a review. J Med Syst 36:2621–2631

    Article  PubMed  Google Scholar 

  14. Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213:317–320

    Article  CAS  PubMed  Google Scholar 

  15. Bearer EL (2003) Overview of image analysis, image importing, and image processing using freeware. Curr Protoc Mol Biol Chapter 14:Unit 14 15

  16. Prodanov D, Heeroma J, Marani E (2006) Automatic morphometry of synaptic boutons of cultured cells using granulometric analysis of digital images. J Neurosci Methods 151:168–177

    Article  PubMed  Google Scholar 

  17. Carmona R, Macias D, Guadix JA, Portillo V, Perez-Pomares JM, Munoz-Chapuli R (2007) A simple technique of image analysis for specific nuclear immunolocalization of proteins. J Microsc 225:96–99

    Article  CAS  PubMed  Google Scholar 

  18. McAtee PA, Hallett IC, Johnston JW, Schaffer RJ (2009) A rapid method of fruit cell isolation for cell size and shape measurements. Plant Methods 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  19. Safadi RA, Musleh AS, Al-Khateeb TH, Hamasha AA (2010) Analysis of immunohistochemical expression of k19 in oral epithelial dysplasia and oral squamous cell carcinoma using color deconvolution-image analysis method. Head Neck Pathol 4:282–289

    Article  PubMed Central  PubMed  Google Scholar 

  20. Cai Z, Chattopadhyay N, Liu WJ, Chan C, Pignol JP, Reilly RM (2011) Optimized digital counting colonies of clonogenic assays using ImageJ software and customized macros: comparison with manual counting. Int J Radiat Biol 87:1135–1146

    Article  CAS  PubMed  Google Scholar 

  21. Kim US, Kim SJ, Baek SH, Kim HK, Sohn YH (2011) Quantitative analysis of optic disc color. Korean J Ophthalmol 25:174–177

    Article  PubMed Central  PubMed  Google Scholar 

  22. Girish V, Vijayalakshmi A (2004) Affordable image analysis using NIH Image/ImageJ. Indian J Cancer 41:47

    CAS  PubMed  Google Scholar 

  23. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:25–30

    Article  PubMed  Google Scholar 

  24. Hood JL, Pan H, Lanza GM, Wickline SA (2009) Paracrine induction of endothelium by tumor exosomes. Lab Invest 89:1317–1328

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kitzing TM, Wang Y, Pertz O, Copeland JW, Grosse R (2010) Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC. Oncogene 29:2441–2448

    Article  CAS  PubMed  Google Scholar 

  26. Kam Y, Karperien A, Weidow B, Estrada L, Anderson AR, Quaranta V (2009) Nest expansion assay: a cancer systems biology approach to in vitro invasion measurements. BMC Res Notes 2:130

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ezquerro IJ, Lasarte JJ, Dotor J, Castilla-Cortazar I, Bustos M, Penuelas I, Blanco G, Rodriguez C, Lechuga Mdel C, Greenwel P, Rojkind M, Prieto J et al (2003) A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine 22:12–20

    Article  CAS  PubMed  Google Scholar 

  28. Llopiz D, Dotor J, Casares N, Bezunartea J, Diaz-Valdes N, Ruiz M, Aranda F, Berraondo P, Prieto J, Lasarte JJ, Borras-Cuesta F, Sarobe P (2009) Peptide inhibitors of transforming growth factor-beta enhance the efficacy of antitumor immunotherapy. Int J Cancer 125:2614–2623

    Article  CAS  PubMed  Google Scholar 

  29. Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11:790–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Maximova OA, Taffs RE, Pomeroy KL, Piccardo P, Asher DM (2006) Computerized morphometric analysis of pathological prion protein deposition in scrapie-infected hamster brain. J Histochem Cytochem 54:97–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Laura Stokes for help with editing the manuscript. G. Gallo-Oller was supported by a fellowship from the Department of Education of the Government of Navarra, Pamplona, Spain. This research was supported in part by grants from the Department of Health of the Government of Navarra, Caja Navarra (Project 13912), Fundación Universitaria de Navarra, Pamplona; and Fondo de Investigación Sanitaria (PI-081849, to JSC; and PI-101972, to JAR), Madrid.

Conflict of interest

The authors declare no conflict of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javier Dotor or Javier S. Castresana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo-Oller, G., Rey, J.A., Dotor, J. et al. Quantitative method for in vitro matrigel invasiveness measurement through image analysis software. Mol Biol Rep 41, 6335–6341 (2014). https://doi.org/10.1007/s11033-014-3556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3556-0

Keywords

Navigation