Skip to main content

Advertisement

Log in

Image Analysis Tools for Evaluation of Microscopic Views of Immunohistochemically Stained Specimen in Medical Research–a Review

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The aim of this study is to review the methods being used for image analysis of microscopic views of immunohistochemically stained specimen in medical research. The solutions available range from general purpose software to commercial packages. Many studies have developed their own custom written programs based on some general purpose software available. Many groups have reported development of computer aided image analysis programs aiming at obtaining faster, simpler and cheaper solutions. Image analysis tools namely Aperio, Lucia, Metaview, Metamorph, ImageJ, Scion, Adobe Photoshop, Image Pro Plus are also used for evaluation of expressions using immunohistochemical staining. An overview of such methods used for image analysis is provided in this paper. This study concludes that there is good scope for development of freely available software for staining intensity quantification, which a medical researcher could easily use without requiring high level computer skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Meijer, G. A., Belien, J. A. M., van Diest, P. J., and Baak, P. A., Origins of image analysis in clinical pathology. J. Clin. Pathol. 50:365–70, 1997.

    Article  Google Scholar 

  2. Brugal, G., Pattern recognition, image processing, related data analysis and expert systems integrated in medical microscopy, 286–287, 1988.

  3. Tourassi, G. D., Journey toward computer–aided diagnosis: role of image texture analysis. Radiology 213:317–20, 1999.

    Google Scholar 

  4. Walker, R. A., Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment I. Histochemistry 49:406–10, 2006.

    Google Scholar 

  5. Gratzinger, D., Zhao, S., Marinelli, R. J., Kaoo, A. V., et al., Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes. Am. J. Pathol. 170:1362–9, 2007.

    Article  Google Scholar 

  6. Pauschinger, M., Knopf, D., Petschauer, S., Doerner, A., et al., Dilated cardiomyopathy is associated with significant changes in collagen Type I/III ratio. Circ. Am. Heart Assoc. 99:2750–6, 1999.

    Google Scholar 

  7. Puolakkainen, P. A., Brekken, R. A., Muneer, S., and Sage, E. H., Enhanced growth of pancreatic tumors in SPARC-Null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Mol. Cancer Res. 2:215–24, 2004.

    Google Scholar 

  8. Babinskia, M. A., de Brito-Gitiranac, L., Chagas, M. A., Abid’u-igueiredoc, M., et al., Immunohistochemical analysis of smooth muscle cells and volumetric density of the elastic System fibers of wild boar (Sus scrofa) penis. Anim. Reprod. Sci. 86:317–28, 2005.

    Article  Google Scholar 

  9. Nielsen, T. O., Hsu, F. D., Jensen, K., Cheang, M., et al., Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10:5367–74, 2004.

    Article  Google Scholar 

  10. Sladjana, U. Z., Ivan, J. D., and Bratislav, S. D., Microanatomical structure of the human sciatic nerve. Surg. Radiol. Anat. 30:619–26, 2008.

    Article  Google Scholar 

  11. Prodanov, D., Heeroma, J., and Marani, E., Automatic morphometry of synaptic boutons of cultures cells using granulometric analysis of digital images. J. Neurosci. Meth. 2:761–6, 2005.

    Google Scholar 

  12. Yamauchi, Y., Michitaka, K., and Onji, M., Morphometric analysis of lymphatic and blood vessels in human chronic viral liver diseases. Am. J. Pathol. 153(4):1131–7, 1998.

    Article  Google Scholar 

  13. Girish, V., and Vijayalakshmi, A., Affordable image analysis using NIH Image/ImageJ, Indian J. Cancer, 41–47, 2004.

  14. Allen, A. C., and Southern, S. O., A novel technique of computer assisted image analysis to quantify molecular stress in cetaceans, Application Note #3, Image Pro Plus.

  15. Thomsen, N. O. B., Mojaddidi, M., Malik, R. A., and Dahlin, L. B., Biopsy of the posterior intraosseous nerve: A low morbidity method for the assessmet of peripheral disorders. Diabet. Med. 26:100–4, 2009.

    Article  Google Scholar 

  16. Johansson, A. C., Visse, E., Widegren, B., Sjogren, H., et al., Computerized image analysis as a tool to quantify infiltrating leukocytes: A comparison between high-and low-magnification images. J. Histochem. Cytochem. 49:1073–80, 2001.

    Article  Google Scholar 

  17. Lehr, H. A., van Deer Loos, C. M., Teeling, P., and Gown, A. M., Completer chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. J. Histochem. Cytocehm. 47:119–26, 1999.

    Article  Google Scholar 

  18. Lehr, H. A., Mankoff, D. A., Corwin, D., Santeusanio, G., and Gown, A. M., Application of photoshop-based image analysis to quantification of hormone receptor expression in breast cancer. J. Histochem. Cytocehm. 45:1559–65, 1997.

    Article  Google Scholar 

  19. Yadav, A. K., Mishra, K., Mohta, A., and Agarwal, S., Hirschprung’s disease: Is there a relationship between mast cells and nerve fibres? World J. Gastroenterol. 15(12):1493–8, 2009.

    Article  Google Scholar 

  20. Kokolakis, G., Panagis, L., Stathopoulos, E., Giannikaki, E., et al., From the protein to the graph: How to quantify immunohistochemistry staining of the skin using digital imaging. J. Immunol. Meth. 331((1–2) 29):140–6, 2008.

    Article  Google Scholar 

  21. Mobasheri, A., Fox, R., Evans, I., Cullingham, F., et al., Epithelial Na, K-ATPase expression is down-regulated in canine prostate cancer; a possible consequence of metabolic transformation in the process of prostate malignancy. Cancer Cell Int. 3:8, 2008.

    Article  Google Scholar 

  22. Tolivia, J., Navarro, A., del Valle, E., Perez, C., Ordoñez, C., and Martínez, E., Application of Photoshop and Scion Image analysis to quantification of signals in histochemistry, immunocytochemistry and hybridocytochemistry. Anal. Quant. Cytol. Histol. 28(1):43–53, 2006.

    Google Scholar 

  23. Xu, Y., Sattler, G. L., Edwards, H., Pitot, H. C., Nuclear-labeling index analysis (NLIA), a software package used to perform accurate automation of cell nuclear-labeling index analysis on immunohistochemically stained rat liver samples, 63: 1, 55–70, 2000.

  24. Kaetsu, Y., Yamamoto, Y., Sugihara, S., and Matsuura, T., Role of cysteinyl leukotrienes in the proliferation and the migration of murine vascular smooth muscle cells in vivo and in vitro. Cardiovasc. Res. 76(1):160–6, 2007.

    Article  Google Scholar 

  25. Soylu, A. R., Aydogdu, N., Basaran, U. N., and Altaner, S., Antioxidants vitamin E and C attenuate hepatic fibrosis in biliary-obstructed rats. World J. Gastroenterol. 12(42):6835–41, 2006.

    Google Scholar 

  26. Weaver, J. R., and Au, J. L. S., Comparative scoring by visual and image analysis of cells in human solid tumors labeled for proliferation markers. Cytometry 27:189–99, 1997.

    Article  Google Scholar 

  27. Charpin, C., Martin, P. M., De Victor, B., Lavaut, M. N., et al., Multiparametric study (SAMBA 200) of estrogen receptor immunocytochemical assay in 400 human breast carcinomas: analysis of estrogen receptor distribution heterogeneity in tissues and correlations with dextran coated charcoal assays and morphological data. Cancer Res. 48(6):1578–86, 1988.

    Google Scholar 

  28. Esteban, J. M., Ahn, C., Mehta, P., and Battifora, H., Biologic significance of quantitative estrogen receptor immunohistochemical assay by image analysis in breast cancer. Am. J. Clin. Pathol. 102(2):158–62, 1994.

    Google Scholar 

  29. Auger, M., Katz, R. L., Johnston, D. A., Sneige, N., et al., Quantitation of immunocytochemical estrogen and progesterone receptor content in fine needle aspirates of breast carcinoma using the SAMBA 4000 image analysis system. Anal. Quant. Cytol. Histol. 15(4):274–80, 1993.

    Google Scholar 

  30. Charpin, C., and Andrac, L., Habib M.C, Vacheret H et al., Immunodetection in fine-needle aspirates and multiparametric (SAMBA) image analysis. Receptors (monoclonal antiestrogen and antiprogesterone) and growth fraction (monoclonal Ki67) evaluation in breast carcinomas. Cancer 63(5):863–72, 1989.

    Article  Google Scholar 

  31. Caulet, S., Lesty, C., Raphael, M., Schoyeart, D., et al., Comparative quantitative study of Ki-67 antibody staining in 78 B and T cell malignant lymphoma (ML) using two image analyser systems. Pathol. Res. Pract. 188(4–5):490–496.

  32. Guidozzi, F., Szumel, R. C., and Ball, J. H. S., Image analysis of cellular DNA content in peritoneal fluid of patients with ovarian tumors of low malignant potential and invasive epithelial ovarian Cancer. Gynecol. Oncol. 61(2):204–9, 1996.

    Article  Google Scholar 

  33. Lin, P., Mahdavy, M., Zhan, F., Zhang, H., Katz, R. L., and Shaughnessy, J. D., Expression of PAX5 in CD20-positive multiple myeloma assessed by immunohistochemistry and oligonucleotide microarray. Mod. Pathol. 17:1217–22, 2004.

    Article  Google Scholar 

  34. Maximova, A., Taffs, R. E., Pomeroy, K. L., Piccardo, P., et al., Computerized morphometric analysis of pathological prion protein deposition in scrapie-infected hamster brain. J. Histochem. Cytochem. 54(1):97–107, 2006.

    Article  Google Scholar 

  35. Arango, A., Holbert, S., Zala, D., and Brouillet, E., CA150 Expression delays striatal cell death in overexpression and knock-in conditions for mutant huntington neurotoxicity. J. Neurosci. 26(17):4649–59, 2006.

    Article  Google Scholar 

  36. Fu, J., Lv, X., Lin, H., and Wu, L., Ubiquitin Ligase Cullin 7 induces epithelial-mesenchymal transition in human choriocarcinoma cells. J. Biol. Chem. 285:10870–9, 2010.

    Article  Google Scholar 

  37. Iwasato, T., Datwani, A., Wolf, A. M., Nishiyama, H., et al., Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406:726–31, 2000.

    Article  Google Scholar 

  38. Morishige, N., Jester, J. V., Naito, J., and Osorio, N., Herpes simplex virus type 1 ICP0 localizes in the stromal layer of infected rabbit corneas and resides predominantly in the cytoplasm and/or perinuclear region of rabbit keratocytes. J. Gen. Virol. 87:2817–25, 2006.

    Article  Google Scholar 

  39. Walsh, C. T., Wei, Y., Guillaume, M., and Au, J. L. S., Quantitative image analysis of intra-tumoral bFGF level as a molecular marker of paclitaxel resistance. J. Transl. Med. 6:4, 2008.

    Article  Google Scholar 

  40. Sanders, J. E., Goldstein, B. S., Leotta, D. F., and Richards, K. A., Image processing techniques for quantitative analysis of skin structures, Computer methods and programs in biomedicine, 59:167–180, 1999.

  41. Gutierrez, A., Saracibar, G., Casis, L., Echevarria, E., et al., Effects of Fluotexine administrationon neuropeptide Y amd Orexins in onese Zucker rat hypothalamus. Obes. Res. 10:6, 2002.

    Article  Google Scholar 

  42. Lucchini R.E, Facchini F, Turato G, Saetta M et al., Increased VIP–positive nerve fibres in the mucous glands of subjects with chronic bronchitis, Am J Respir Crit Care Med, 156: 1963–1968, 1997.

    Google Scholar 

  43. Lazcano, O., Chen, L., Tsai, C., Li, C., et al., Image analysis and flow cytometric DNA studies of benign and malignant body cavity fluids: Reappraisal of the role of current methods in the differential diagnosis of reactive versus malignant conditions. Mod. Pathol. 13(7):788–96, 2000.

    Article  Google Scholar 

  44. Huang, Q., Yu, C., Klein, M., Fang, J., and Goyal, R. K., DNA index determination with Automated Cellular Imaging System (ACIS) in Barrett’s esophagus: Comparison with CAS 200. BMC Clin. Pathol. 5:1, 7, 2005. doi:10.1186/1472-6890-5-7.

  45. Tawfik, W., Kimler, B. F., Davis, M., Donahue, et al., Comparison of immunohistochemistry by automated cellular imaging system (ACIS) versus fluorEscence in-situ hybridization in the evaluation of HER-2/neu expression in primary breast carcinoma, Histopathology, 48(3):258–267, 2006.

  46. Petr, D., Svíženská, I., and Klusáková, I., Computer-assisted quantitative immunohistochemistry of the extracellular matrix in the dorsal and ventral spinal roots with the use of Lucia software. Histochem. J. 33(8):475–6, 2001.

    Google Scholar 

  47. Combes, V., Coltel, N., Alibert, M., and van Eck, M., ABCA1 gene deletion protects against cerebral malaria. Am. J. Pathol. 166:295–302, 2005.

    Article  Google Scholar 

  48. Kummer, V., Ková, J. M., and Renâová, E., Immunohistochemical detection of central nervous tissue in meat products. Acta Vet. Brno 74:449–54, 2005.

    Article  Google Scholar 

  49. Narita, D., Raica, M., Suciu, C., Cîmpean, A., and Anghel, A., Immunohistochemical expression of androgen receptor and prostate-specific antigen in breast cancer. Folia Histochem. Cytobiol. 44(3):165–72, 2006.

    Google Scholar 

  50. Bolton, K. L., Garcia-Closas, M., Pfeiffer, R. M., and Duggan, M. A., Assessment of automated image analysis of breast cancer tissue microarrays for epidemiologic studies. Cancer Epidemiol. Biomark. Prev. 19:992, 2010.

    Article  Google Scholar 

  51. Sabattini, S., and Bettini, G., Prognostic Value of Histologic and Immunohistochemical features in feline cutaneous mast cell tumors. SAGE journals online 47(4):643–53, 2010.

    Google Scholar 

  52. Fiorentino, M., Judson, G., Penney, K., and Flavin, R., Immunohistochemical expression of BRCA1 and lethal prostate cancer. Cancer Res. 70:3136, 2010.

    Article  Google Scholar 

  53. Hrdličková-Cela, E., Plzák, J., Smetana, K., Mělková, Z., et al., Detection of galectin-3 in tear fluid at disease states and immunohistochemical and lectin histochemical analysis in human corneal and conjunctival epithelium. Br. J. Ophthalmol. 85:1336–40, 2001.

    Article  Google Scholar 

  54. Heneka, M. T., Ramanathan, M., Jacobs, A. H., and Dumitrescu-Ozimek, L., Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J. Neurosci. 26(5):1343–54, 2006.

    Article  Google Scholar 

  55. Turashvili, G., Leung, S., Turbin, D., Montgomery, K., et al., Inter-observer reproducibility of HER2 immunohistochemical assessment and concordance with fluorescent in situ hybridization (FISH): Pathologist assessment compared to quantitative image analysis. BMC Cancer 9:165, 2009.

    Article  Google Scholar 

  56. Krajewska, M., Smith, L. H., Rong, J., Huang, X., et al., Image analysis algorithms for immunohistochemical assessment of cell death events and fibrosis in tissue sections. J. Histochem. Cytochem. 57(7):649–63, 2009.

    Article  Google Scholar 

  57. Rojo, M. G., Bueno, G., and Slodkowska, J., Review of imaging solutions for integrated quantitative immunohistochemistry in the pathology daily practice. Folia Histochem. Cytobiol. 47(3):349–54, 2009.

    Article  Google Scholar 

  58. Bongartz, T., Cantaert, T., Atkins, S. R., Harle, P., et al., Citrullination in extra-articular manifestations of rheumatoid arthritis. Rheumatology 46(1):70–5, 2007.

    Article  Google Scholar 

  59. Atkins, S. R., Matteson, E. L., Myers, J. L., Ryu, J. H., et al., Morphological and quantitative assessment of mast cells in rheumatoid arthritis associated non-specific interstitial pneumonia and usual interstitial pneumonia. Ann. Rheum. Dis. 65:677–80, 2006.

    Article  Google Scholar 

  60. Parker, A. S., Lohse, C. M., and Leibovich, B. C., Comparison of digital image analysis versus visual assessment to assess survivin expression as an independent predictor of survival for patients with clear cell renal cell carcinoma. Hum. Pathol. 39(8):1176–84, 2008.

    Article  Google Scholar 

  61. Conway, C., Dobson, L., O’Grady, A., Kay, E., Costello, S., and O’Shea, D., Virtual microscopy as an enabler of automated/quantitative assessment of protein expression in TMAs. Histochem. Cell Biol. 130(3):447–63, 2008.

    Article  Google Scholar 

  62. Hong, F., Tuyama, A., Lee, T. F., Loke, J., et al., Hepatic stellate cells express functional CXCR4: Role in stromal cell–derived factor-1–Mediated stellate cell activation. Hepatology 49(6):2055–67, 2009.

    Article  Google Scholar 

  63. Vijitruth, R., Liu, M., Choi, D., Nguyen, X. V., et al., Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J. Neuroinflammation 3:6, 2006.

    Article  Google Scholar 

  64. Su, Y., Shrubsole, M. J., Ness, R. M., Cai, Q., et al., Immunohistochemical expressions of Ki-67, Cyclin D1, β-Catenin, Cyclooxygenase-2, and Epidermal Growth Factor Receptor in human colorectal adenoma: A validation study of tissue microarrays. Cancer Epidemiol. Biomark. Prev. 15:1719, 2006.

    Article  Google Scholar 

  65. McCoard, A., Wise, T. H., and Ford, J. J., Expression levels of Mullerian-inhibiting substance, GATA4 and 17-hydroxylase/17, 20-lyase cytochrome P450 during embryonic gonadal development in two diverse breeds of swine. J. Endocrinol. 175:365–74, 2002.

    Article  Google Scholar 

  66. Kostopoulos, S., Cavouras, D., Daskalakis, A., Kalatzis, I., et al., Assessing estrogen receptors’ status by texture analysis of breast tissue specimens and pattern recognition methods, CAIP’07 Proceedings of the 12th international conference on Computer analysis of images and patterns, 2007.

  67. Sharangpani, G. M., Joshi, A. S., Porter, K., Deshpande, A. S., Keyhani, S., Naik, G. A., Gholap, A. S., and Barsky, S. H., Semi-automated imaging system to quantitate estrogen and progesterone receptor immunoreactivity in human breast cancer. J. Microsc. 226:244–55, 2007.

    Article  MathSciNet  Google Scholar 

  68. Joshi, A. S., Sharangpani, G. M., Porter, K., Keyhani, S., et al., Semi-automated imaging system to quantitate Her-2/neu membrane receptor immunoreactivity in human breast cancer. Cytometry A71(5):273–85, 2007.

    Article  Google Scholar 

  69. Rexhepaj, E., Brennan, D. J., Holloway, P., Kay, E. W., et al., Novel image analysis approach for quantifying expression of nuclear proteins assessed by immunohistochemistry: Application to measurement of oestrogen and progesterone receptor levels in breast cancer. Breast Cancer Res. 10:R89, 2008.

    Article  Google Scholar 

  70. Pham, N., Morrison, A., Schwock, J., and Aviel-Ronen, S., Quantitative image analysis of immunohistochemical stains using a CMYK color model. Diagn. Pathol. 2:8, 2007.

    Article  Google Scholar 

  71. Hu, J., Ambrus, A., Fossum, T. W., and Miller, M. W., Time courses of growth and remodeling of porcine aortic media during hypertension: A quantitative immunohistochemical examination. J. Histochem. Cytochem. 56(4):359–70, 2008.

    Article  Google Scholar 

  72. Aziz, D. C., Quantitation of estrogen and progesterone receptors by immunocytochemical and image analyses. Am. J. Clin. Pathol. 98:105–11, 1992.

    Google Scholar 

  73. Schnorrenberg, F., Pattichis, C. S., Kyriacou, K., Vassiliou, M., et al., Computer–aided classification of breast cancer nuclei, J. Tech. & Health Care 1996.

  74. Karaçal, B., Vamvakidou, A. P., and Tözeren, A., Automated recognition of cell phenotypes in histology images based on membrane-and nuclei-targeting biomarkers. BMC Med. Imaging 7:7, 2007.

    Article  Google Scholar 

  75. Kaczmarek, E., Górna, A., and Majewski, P., Techniques of image analysis for quantitative immunohistochemistry. Proc. Ann. Acad. Med. Bialostocensis 49(1):155, 2004.

    Google Scholar 

  76. Niendorf, A., Rath, M., Wolf, K., Peters, S., et al., Morphological detection and quantification of lipoprotein (a) deposition in atheromatous lesions of human aorta and coronary arteries. Virchows Arch. Pathol. Anat. 417:105–11, 1990.

    Article  Google Scholar 

  77. Encarnacion, M. M. D., Griffin, M. D., Slezak, J. M., Bergstralh, E. J., et al., Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy. Am. J. Transplant. 4(2):248, 2004.

    Article  Google Scholar 

  78. Underwood, R. A., Gibran, N. S., Muffley, L. A., Usui, M. L., et al., Color subtractive-computer assisted image analysis for quantification of cutaneous nerves in a diabetic mouse model. J. Histochem. Cytochem. 49(10):1285–91, 2001.

    Article  Google Scholar 

  79. Prasad, K., Zimmermann, B., Prabhu, G., and Pai, M., Data mining approach for automation of diagnosis of breast cancer in immunohistochemically stained tissue microarray images. Open Med. Inform. J. 4:86–93, 2010.

    Google Scholar 

  80. Wollman, R., and Stuurman, N., High throughput microscopy: From raw images to discoveries. J. Cell Sci. 120:3715–22, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerthana Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K., Prabhu, G.K. Image Analysis Tools for Evaluation of Microscopic Views of Immunohistochemically Stained Specimen in Medical Research–a Review. J Med Syst 36, 2621–2631 (2012). https://doi.org/10.1007/s10916-011-9737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-011-9737-7

Keywords

Navigation