Skip to main content

Advertisement

Log in

Angiogenesis and invasion in glioma

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Despite advances in surgical and medical therapy, glioblastoma consistently remains a fatal disease. Over the last 20 years, no significant increase in survival has been achieved for patients with this disease. The formation of abnormal tumor vasculature and glioma cell invasion along white matter tracts are believed to be the major factors responsible for the resistance of these tumors to treatment. Therefore, investigation of angiogenesis and invasion in glioblastoma is essential for the development of a curative therapy. In our report, we first reviewed certain histopathological studies that focus on angiogenesis and invasion of human malignant gliomas. Second, we considered several animal models of glioma available for studying angiogenesis and invasion, including our novel animal models. Third, we focused on the molecular aspects of glioma angiogenesis and invasion, and the key mediators of these processes. Finally, we discussed the recent and ongoing clinical trials targeting tumor angiogenesis and invasion in glioma patients. A better understanding of the mechanism of glioma angiogenesis and invasion will lead to the development of new treatment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bello L, Giussani C, Carrabba G et al (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284

    CAS  PubMed  Google Scholar 

  2. Kleihues P, Louis DN, Scheithauer BW et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225 (discussion 26–29)

    PubMed  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  4. Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347

    Article  CAS  PubMed  Google Scholar 

  5. Lopes MB (2003) Angiogenesis in brain tumors. Microsc Res Tech 60:225–230

    Article  CAS  PubMed  Google Scholar 

  6. Reifenberger G, Collins VP (2004) Pathology and molecular genetics of astrocytic gliomas. J Mol Med 82:656–670

    Article  CAS  PubMed  Google Scholar 

  7. Lebelt A, Dzieciol J, Guzinska-Ustymowicz K et al (2008) Angiogenesis in gliomas. Folia Histochem Cytobiol 46:69–72

    Article  PubMed  Google Scholar 

  8. Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32:253–265

    Article  CAS  PubMed  Google Scholar 

  9. Rong Y, Durden DL, Van Meir EG et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539

    Article  PubMed  Google Scholar 

  10. Cingolani A, De Luca A, Larocca LM et al (1998) Minimally invasive diagnosis of acquired immunodeficiency syndrome-related primary central nervous system lymphoma. J Natl Cancer Inst 90:364–369

    Article  CAS  PubMed  Google Scholar 

  11. Burger PC, Heinz ER, Shibata T et al (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68:698–704

    Article  CAS  PubMed  Google Scholar 

  12. Koutcher JA, Hu X, Xu S et al (2002) MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia 4:480–485

    Article  PubMed  Google Scholar 

  13. Tovi M, Hartman M, Lilja A et al (1994) MR imaging in cerebral gliomas tissue component analysis in correlation with histopathology of whole-brain specimens. Acta Radiol 35:495–505

    CAS  PubMed  Google Scholar 

  14. Suzuki SO, Kitai R, Llena J et al (2002) MAP-2e, a novel MAP-2 isoform, is expressed in gliomas and delineates tumor architecture and patterns of infiltration. J Neuropathol Exp Neurol 61:403–412

    CAS  PubMed  Google Scholar 

  15. Sakariassen PO, Prestegarden L, Wang J et al (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 103:16466–16471

    Article  CAS  PubMed  Google Scholar 

  16. Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6:447–457

    Article  CAS  PubMed  Google Scholar 

  17. Horten BC, Basler GA, Shapiro WR (1981) Xenograft of human malignant glial tumors into brains of nude mice. A histopathological study. J Neuropathol Exp Neurol 40:493–511

    Article  CAS  PubMed  Google Scholar 

  18. Giannini C, Sarkaria JN, Saito A et al (2005) Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 7:164–176

    Article  CAS  PubMed  Google Scholar 

  19. Engebraaten O, Fodstad O (1999) Site-specific experimental metastasis patterns of two human breast cancer cell lines in nude rats. Int J Cancer 82:219–225

    Article  CAS  PubMed  Google Scholar 

  20. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  21. Gunther HS, Schmidt NO, Phillips HS et al (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909

    Article  CAS  PubMed  Google Scholar 

  22. Wong ML, Prawira A, Kaye AH et al (2009) Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 16:1119–1130

    Article  CAS  PubMed  Google Scholar 

  23. Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48:347–356

    CAS  PubMed  Google Scholar 

  24. Zagzag D, Goldenberg M, Brem S (1989) Angiogenesis and blood–brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. Am J Roentgenol 153:141–146

    CAS  Google Scholar 

  25. Del Maestro RF, Megyesi JF, Farrell CL (1990) Mechanisms of tumor-associated edema: a review. Can J Neurol Sci 17:177–183

    CAS  PubMed  Google Scholar 

  26. Zagzag D, Amirnovin R, Greco MA et al (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849

    CAS  PubMed  Google Scholar 

  27. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  28. Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400

    Article  CAS  PubMed  Google Scholar 

  29. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464

    Article  CAS  PubMed  Google Scholar 

  30. Reiss Y, Machein MR, Plate KH (2005) The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 15:311–317

    Article  CAS  PubMed  Google Scholar 

  31. Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  32. Rooprai HK, McCormick D (1997) Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 17:4151–4162

    CAS  PubMed  Google Scholar 

  33. Rao JS, Yamamoto M, Mohaman S et al (1996) Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis 14:12–18

    Article  CAS  PubMed  Google Scholar 

  34. Forsyth PA, Wong H, Laing TD et al (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835

    Article  CAS  PubMed  Google Scholar 

  35. Lakka SS, Gondi CS, Rao JS (2005) Proteases and glioma angiogenesis. Brain Pathol 15:327–341

    Article  CAS  PubMed  Google Scholar 

  36. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  CAS  PubMed  Google Scholar 

  37. Kim S, Bell K, Mousa SA et al (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362

    Article  CAS  PubMed  Google Scholar 

  38. Lindahl P, Johansson BR, Leveen P et al (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  CAS  PubMed  Google Scholar 

  39. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  PubMed  Google Scholar 

  40. Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622

    Article  CAS  PubMed  Google Scholar 

  41. Safran M, Kaelin WG Jr (2003) HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 111:779–783

    CAS  PubMed  Google Scholar 

  42. Jiang BH, Rue E, Wang GL et al (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778

    Article  CAS  PubMed  Google Scholar 

  43. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12

  44. Brahimi-Horn C, Berra E, Pouyssegur J (2001) Hypoxia: the tumor’s gateway to progression along the angiogenic pathway. Trends Cell Biol 11:S32–S36

    Article  CAS  PubMed  Google Scholar 

  45. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  46. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  CAS  PubMed  Google Scholar 

  47. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  48. Esser S, Lampugnani MG, Corada M et al (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865

    CAS  PubMed  Google Scholar 

  49. Kevil CG, Payne DK, Mire E et al (1998) Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 273:15099–15103

    Article  CAS  PubMed  Google Scholar 

  50. Mandriota SJ, Seghezzi G, Vassalli JD et al (1995) Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 270:9709–9716

    Article  CAS  PubMed  Google Scholar 

  51. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  CAS  PubMed  Google Scholar 

  52. Graham CH, Connelly I, MacDougall JR et al (1994) Resistance of malignant trophoblast cells to both the anti-proliferative and anti-invasive effects of transforming growth factor-beta. Exp Cell Res 214:93–99

    Article  CAS  PubMed  Google Scholar 

  53. Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228

    Article  PubMed  Google Scholar 

  54. Dirks PB (2001) Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration. J Neurooncol 53:203–212

    Article  CAS  PubMed  Google Scholar 

  55. Farin PW, Crosier AE, Farin CE (2001) Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology 55:151–170

    Article  CAS  PubMed  Google Scholar 

  56. Bremnes RM, Veve R, Hirsch FR et al (2002) The E-cadherin cell–cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36:115–124

    Article  PubMed  Google Scholar 

  57. Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502

    Article  CAS  PubMed  Google Scholar 

  58. Ruch RJ (1994) The role of gap junctional intercellular communication in neoplasia. Ann Clin Lab Sci 24:216–231

    CAS  PubMed  Google Scholar 

  59. Dermietzel R, Spray DC (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16:186–192

    Article  CAS  PubMed  Google Scholar 

  60. McDonough WS, Johansson A, Joffee H et al (1999) Gap junction intercellular communication in gliomas is inversely related to cell motility. Int J Dev Neurosci 17:601–611

    Article  CAS  PubMed  Google Scholar 

  61. Soroceanu L, Manning TJ Jr, Sontheimer H (2001) Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33:107–117

    Article  CAS  PubMed  Google Scholar 

  62. Nagano O, Saya H (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95:930–935

    Article  CAS  PubMed  Google Scholar 

  63. Gunia S, Hussein S, Radu DL et al (1999) CD44s-targeted treatment with monoclonal antibody blocks intracerebral invasion and growth of 9L gliosarcoma. Clin Exp Metastasis 17:221–230

    Article  CAS  PubMed  Google Scholar 

  64. Okamoto I, Kawano Y, Matsumoto M et al (1999) Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small G proteins. J Biol Chem 274:25525–25534

    Article  CAS  PubMed  Google Scholar 

  65. Leavesley DI, Ferguson GD, Wayner EA et al (1992) Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol 117:1101–1107

    Article  CAS  PubMed  Google Scholar 

  66. Platten M, Wick W, Wild-Bode C et al (2000) Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via up-regulation of alpha(V)beta(3) integrin expression. Biochem Biophys Res Commun 268:607–611

    Article  CAS  PubMed  Google Scholar 

  67. Adachi Y, Lakka SS, Chandrasekar N et al (2001) Down-regulation of integrin alpha(v)beta(3) expression and integrin-mediated signaling in glioma cells by adenovirus-mediated transfer of antisense urokinase-type plasminogen activator receptor (uPAR) and sense p16 genes. J Biol Chem 276:47171–47177

    Article  CAS  PubMed  Google Scholar 

  68. Natarajan M, Stewart JE, Golemis EA et al (2006) HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene 25:1721–1732

    Article  CAS  PubMed  Google Scholar 

  69. Liotta LA, Tryggvason K, Garbisa S et al (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68

    Article  CAS  PubMed  Google Scholar 

  70. Wild-Bode C, Weller M, Wick W (2001) Molecular determinants of glioma cell migration and invasion. J Neurosurg 94:978–984

    Article  CAS  PubMed  Google Scholar 

  71. Li L, Gondi CS, Dinh DH et al (2007) Transfection with anti-p65 intrabody suppresses invasion and angiogenesis in glioma cells by blocking nuclear factor-kappaB transcriptional activity. Clin Cancer Res 13:2178–2190

    Article  CAS  PubMed  Google Scholar 

  72. Song H, Li Y, Lee J et al (2009) Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res 69:879–886

    Article  CAS  PubMed  Google Scholar 

  73. Wang H, Shen W, Huang H et al (2003) Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 63:4315–4321

    CAS  PubMed  Google Scholar 

  74. Baker AH, George SJ, Zaltsman AB et al (1999) Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79:1347–1355

    Article  CAS  PubMed  Google Scholar 

  75. Tonn JC, Kerkau S, Hanke A et al (1999) Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80:764–772

    Article  CAS  PubMed  Google Scholar 

  76. Tonn JC, Goldbrunner R (2003) Mechanisms of glioma cell invasion. Acta Neurochir Suppl 88:163–167

    CAS  PubMed  Google Scholar 

  77. Beadle C, Assanah MC, Monzo P et al (2008) The role of myosin II in glioma invasion of the brain. Mol Biol Cell 19:3357–3368

    Article  CAS  PubMed  Google Scholar 

  78. Salhia B, Rutten F, Nakada M et al (2005) Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 65:8792–8800

    Article  CAS  PubMed  Google Scholar 

  79. Bornhauser BC, Lindholm D (2005) MSAP enhances migration of C6 glioma cells through phosphorylation of the myosin regulatory light chain. Cell Mol Life Sci 62:1260–1266

    Article  CAS  PubMed  Google Scholar 

  80. Brat DJ, Mapstone TB (2003) Malignant glioma physiology: cellular response to hypoxia and its role in tumor progression. Ann Intern Med 138:659–668

    PubMed  Google Scholar 

  81. Zagzag D, Zhong H, Scalzitti JM et al (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618

    Article  CAS  PubMed  Google Scholar 

  82. Brat DJ, Castellano-Sanchez AA, Hunter SB et al (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927

    Article  CAS  PubMed  Google Scholar 

  83. Elstner A, Holtkamp N, von Deimling A (2007) Involvement of Hif-1 in desferrioxamine-induced invasion of glioblastoma cells. Clin Exp Metastasis 24:57–66

    Article  CAS  PubMed  Google Scholar 

  84. Martens T, Schmidt NO, Eckerich C et al (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12:6144–6152

    Article  CAS  PubMed  Google Scholar 

  85. Eckerich C, Zapf S, Fillbrandt R et al (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121:276–283

    Article  CAS  PubMed  Google Scholar 

  86. Sathornsumetee S, Reardon DA, Desjardins A et al (2007) Molecularly targeted therapy for malignant glioma. Cancer 110:13–24

    Article  PubMed  Google Scholar 

  87. Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259

    Article  CAS  PubMed  Google Scholar 

  88. Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787

    Article  CAS  PubMed  Google Scholar 

  89. Lamszus K, Kunkel P, Westphal M (2003) Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 88:169–177

    CAS  PubMed  Google Scholar 

  90. Sathornsumetee S, Cao Y, Marcello JE et al (2008) Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 26:271–278

    Article  CAS  PubMed  Google Scholar 

  91. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  CAS  PubMed  Google Scholar 

  92. MacDonald TJ, Taga T, Shimada H et al (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48:151–157

    Article  CAS  PubMed  Google Scholar 

  93. Fu Y, Ponce ML, Thill M, Yuan P et al (2007) Angiogenesis inhibition and choroidal neovascularization suppression by sustained delivery of an integrin antagonist, EMD478761. Invest Ophthalmol Vis Sci 48:5184–5190

    Article  PubMed  Google Scholar 

  94. Taga T, Suzuki A, Gonzalez-Gomez I et al (2002) alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98:690–697

    Article  CAS  PubMed  Google Scholar 

  95. Eskens FA, Dumez H, Hoekstra R et al (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39:917–926

    Article  CAS  PubMed  Google Scholar 

  96. Reardon DA, Fink KL, Mikkelsen T et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617

    Article  CAS  PubMed  Google Scholar 

  97. Reardon DA, Nabors LB, Stupp R et al (2008) Cilengitide: an integrin-targeting arginine–glycine–aspartic acid peptide with promising activity for glioblastoma multiforme. Exp Opin Invest Drugs 17:1225–1235

    Article  CAS  Google Scholar 

  98. Levin VA, Phuphanich S, Yung WK et al (2006) Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J Neurooncol 78:295–302

    Article  CAS  PubMed  Google Scholar 

  99. Groves MD, Puduvalli VK, Hess KR et al (2002) Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J Clin Oncol 20:1383–1388

    Article  CAS  PubMed  Google Scholar 

  100. D’Amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085

    Article  PubMed  Google Scholar 

  101. Hansen JM, Harris C (2004) A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway. Antioxid Redox Signal 6:1–14

    Article  CAS  PubMed  Google Scholar 

  102. Fine HA, Figg WD, Jaeckle K et al (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18:708–715

    CAS  PubMed  Google Scholar 

  103. Adnane L, Trail PA, Taylor I, Wilhelm SM (2006) Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 407:597–612

    Article  CAS  PubMed  Google Scholar 

  104. Siegelin MD, Raskett CM, Gilbert CA, Ross AH, Altieri DC (2010) Sorafenib exerts anti-glioma activity in vitro and in vivo. Neurosci Lett 478:165–170

    Article  CAS  PubMed  Google Scholar 

  105. Kilic T, Alberta JA, Zdunek PR et al (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60:5143–5150

    CAS  PubMed  Google Scholar 

  106. Ranza E, Mazzini G, Facoetti A, Nano R (2010) In vitro effects of the tyrosine kinase inhibitor imatinib on glioblastoma cell proliferation. J Neurooncol 96:349–357

    Article  CAS  PubMed  Google Scholar 

  107. Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907

    Article  CAS  PubMed  Google Scholar 

  108. Zagzag D, Shiff B, Jallo GI et al (2002) Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res 62:2660–2668

    CAS  PubMed  Google Scholar 

  109. Zagzag D, Friedlander DR, Dosik J et al (1996) Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 56:182–189

    CAS  PubMed  Google Scholar 

  110. Bigner DD, Brown M, Coleman RE et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′)2––a preliminary report. J Neurooncol 24:109–122

    Article  CAS  PubMed  Google Scholar 

  111. Reardon DA, Akabani G, Coleman RE et al (2002) Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20:1389–1397

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomotsugu Ichikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onishi, M., Ichikawa, T., Kurozumi, K. et al. Angiogenesis and invasion in glioma. Brain Tumor Pathol 28, 13–24 (2011). https://doi.org/10.1007/s10014-010-0007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-010-0007-z

Keywords

Navigation