Skip to main content

Advertisement

Log in

MicroRNAs as biomarkers of cervical cancer development: a literature review on miR-125b and miR-34a

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs are non-coding RNAs with important functions in several biological processes, such as, regulation of cell cycle, immune response, inflammation, and apoptosis. In fact, deregulation and abnormal expression of these molecules is associated with human pathologies including cancer and several have already emerged as potential prognostic biomarkers in different neoplasias. miR-34a is directly regulated by p53 and acts as tumor suppressor while miR-125b plays a significant role in immune response and apoptosis. In cervical carcinogenesis, HPV proteins seem to interact with both miR-34a and miR-125b changing its expression and promoting persistent infection and cervical cancer development. In this review we describe the potential role of miR-125b and miR-34a in cervical carcinogenesis, including interaction with HPV and mechanism of deregulation. Additionally, their clinical applications in cervical cancer as prognostic/predictive biomarkers are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  2. Sankaranarayanan R, Ferlay J (2006) Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol 20(2):207–225

    Article  CAS  PubMed  Google Scholar 

  3. Frazer IH (2004) Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 4(1):46–54

    Article  CAS  PubMed  Google Scholar 

  4. Franco EL (2009) A new generation of studies of human papillomavirus DNA testing in cervical cancer screening. J Natl Cancer Inst 101(23):1600–1601

    Article  CAS  PubMed  Google Scholar 

  5. Zur Hausen H (2009) The search for infectious causes of human cancers: where and why. Virology 392(1):1–10

    Article  CAS  PubMed  Google Scholar 

  6. Ramanakumar AV et al (2010) Human papillomavirus (HPV) types 16, 18, 31, 45 DNA loads and HPV-16 integration in persistent and transient infections in young women. BMC Infect Dis 10:326

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hwang SJ, Shroyer KR (2012) Biomarkers of cervical dysplasia and carcinoma. J Oncol 2012:507286

    Article  PubMed Central  PubMed  Google Scholar 

  8. Woodman CB, Collins SI, Young LS (2007) The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7(1):11–22

    Article  CAS  PubMed  Google Scholar 

  9. Sousa H et al (2007) Is the p53 codon 72 polymorphism a key biomarker for cervical cancer development? A meta-analysis review within European populations. Int J Mol Med 20(5):731–741

    CAS  PubMed  Google Scholar 

  10. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  11. Malumbres M (2012) miRNAs versus oncogenes: the power of social networking. Mol Syst Biol 8:569

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lagos-Quintana M et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  PubMed  Google Scholar 

  13. Lau NC et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862

    Article  CAS  PubMed  Google Scholar 

  14. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  16. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  17. Melo SA, Esteller M (2011) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585(13):2087–2099

    Article  CAS  PubMed  Google Scholar 

  18. Kong YW et al (2012) microRNAs in cancer management. Lancet Oncol 13(6):e249–e258

    Article  CAS  PubMed  Google Scholar 

  19. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369

    Article  CAS  PubMed  Google Scholar 

  20. Tili E et al (2008) MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol 4(10):534–541

    Article  CAS  PubMed  Google Scholar 

  21. Wang N et al (2009) Role of microRNAs in cardiac hypertrophy and heart failure. IUBMB Life 61(6):566–571

    Article  CAS  PubMed  Google Scholar 

  22. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  23. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12(9):613–626

    Article  CAS  PubMed  Google Scholar 

  24. Pereira PM et al (2010) MicroRNA expression variability in human cervical tissues. PLoS One 5(7):e11780

    Article  PubMed Central  PubMed  Google Scholar 

  25. He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  CAS  PubMed  Google Scholar 

  26. He X, He L, Hannon GJ (2007) The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67(23):11099–11101

    Article  CAS  PubMed  Google Scholar 

  27. Martinez I et al (2008) Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 27(18):2575–2582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nambaru L et al (2009) Prognostic significance of HPV physical status and integration sites in cervical cancer. Asian Pac J Cancer Prev 10(3):355–360

    PubMed  Google Scholar 

  29. Wang X et al (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3(7):e2557

    Article  PubMed Central  PubMed  Google Scholar 

  30. Li BH et al (2011) Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer 47(14):2166–2174

    Article  CAS  PubMed  Google Scholar 

  31. Li Y et al (2011) Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol 224(4):484–495

    Article  CAS  PubMed  Google Scholar 

  32. Greco D et al (2011) Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One 6(7):e21646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. O’Connell RM, Zhao JL, Rao DS (2011) MicroRNA function in myeloid biology. Blood 118(11):2960–2969

    Article  PubMed  Google Scholar 

  34. Jia HY et al (2012) MicroRNA-125b functions as a tumor suppressor in hepatocellular carcinoma cells. Int J Mol Sci 13(7):8762–8774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Le MT et al (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23(7):862–876

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y et al (2011) miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 71(10):3552–3562

    Article  CAS  PubMed  Google Scholar 

  37. Chaudhuri AA et al (2012) Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proc Natl Acad Sci USA 109(11):4233–4238

    Article  CAS  PubMed  Google Scholar 

  38. Zhao A et al (2012) MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression. J Genet Genomics 39(1):29–35

    Article  CAS  PubMed  Google Scholar 

  39. Pang Y, Young CY, Yuan H (2010) MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 42(6):363–369

    Article  CAS  Google Scholar 

  40. Visone R et al (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26(54):7590–7595

    Article  CAS  PubMed  Google Scholar 

  41. Zhou M et al (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 285(28):21496–21507

    Article  CAS  PubMed  Google Scholar 

  42. Gong J et al (2013) MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 32(25):3071–3079

    Article  CAS  PubMed  Google Scholar 

  43. Scott GK et al (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282(2):1479–1486

    Article  CAS  PubMed  Google Scholar 

  44. Nicolete LD et al (2012) Upregulation of hsa-miR-125b in HTLV-1 asymptomatic carriers and HTLV-1-associated myelopathy/tropical spastic paraparesis patients. Mem Inst Oswaldo Cruz 107(6):824–827

    Article  CAS  PubMed  Google Scholar 

  45. Witwer KW et al (2012) Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients. Retrovirology 9:5

    Article  CAS  PubMed  Google Scholar 

  46. Nuovo GJ et al (2010) Strong inverse correlation between microRNA-125b and human papillomavirus DNA in productive infection. Diagn Mol Pathol 19(3):135–143

    Article  CAS  PubMed  Google Scholar 

  47. Bommer GT et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307

    Article  CAS  PubMed  Google Scholar 

  48. Chang TC et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Corney DC et al (2007) MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka N et al (2012) Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer. Lung Cancer 76(1):32–38

    Article  PubMed  Google Scholar 

  51. Corney DC et al (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16(4):1119–1128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Vogt M et al (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458(3):313–322

    Article  PubMed  Google Scholar 

  53. Wang X et al (2009) Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15(4):637–647

    Article  CAS  PubMed  Google Scholar 

  54. Li B et al (2010) Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer 20(4):597–604

    Article  PubMed  Google Scholar 

  55. Johnson CD et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67(16):7713–7722

    Article  CAS  PubMed  Google Scholar 

  56. Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29(5):903–906

    Article  CAS  PubMed  Google Scholar 

  57. Tan HX et al (2010) MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol 27(3):654–660

    Article  CAS  PubMed  Google Scholar 

  58. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949

    Article  CAS  PubMed  Google Scholar 

  59. Guo CJ et al (2009) miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J Hepatol 50(4):766–778

    Article  CAS  PubMed  Google Scholar 

  60. Song L et al (2011) miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS One 6(9):e25454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Zhong Z et al (2012) miR-21 induces cell cycle at S phase and modulates cell proliferation by down-regulating hMSH2 in lung cancer. J Cancer Res Clin Oncol 138(10):1781–1788

    Article  CAS  PubMed  Google Scholar 

  62. Jin Y (2011) 3,3′-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation. Mol Cell Biochem 358(1–2):345–354

    Article  CAS  PubMed  Google Scholar 

  63. Si ML et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    Article  CAS  PubMed  Google Scholar 

  64. Silber J et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14

    Article  PubMed Central  PubMed  Google Scholar 

  65. Kozaki K et al (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68(7):2094–2105

    Article  CAS  PubMed  Google Scholar 

  66. Bhaumik D et al (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27(42):5643–5647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Piovan C et al (2012) Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol 6(4):458–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Kim YK et al (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37(5):1672–1681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Hu H, Gatti RA (2011) MicroRNAs: new players in the DNA damage response. J Mol Cell Biol 3(3):151–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hu W et al (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38(5):689–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, J., Sousa, H. MicroRNAs as biomarkers of cervical cancer development: a literature review on miR-125b and miR-34a. Mol Biol Rep 41, 1525–1531 (2014). https://doi.org/10.1007/s11033-013-2998-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2998-0

Keywords

Navigation