Skip to main content
Log in

Butyrate increases the formation of anti-angiogenic vascular endothelial growth factor variants in human lung microvascular endothelial cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The primary transcript of vascular endothelial growth factor (VEGF) can be alternatively spliced and translated to pro-angiogenic and anti-angiogenic VEGF variants. We investigated the effect of sodium butyrate (NaB) on pro-angiogenic and anti-angiogenic VEGF variants production in immortalized human lung microvascular endothelial cells (HLMEC). These cells were cultured in the absence or in the presence of NaB, followed by total RNA and protein isolation. The transcript and protein levels of pro-angiogenic and anti-angiogenic VEGF variants were evaluated by reverse transcription, real-time quantitative PCR and western blot analysis. We found that NaB significantly increased the anti-angiogenic transcript and protein levels of the VEGF 121b, VEGF165b and VEGF189b variants in HLMEC cells. We did not find the pro-angiogenic VEGF189a transcript variant either in control or NaB treated cells. By contrast, the pro-angiogenic VEGF121a and VEGF165a transcript variants were present in HLMEC cells, but their levels were slightly modulated in the cells treated with NaB compared to controls. Since anti-angiogenic VEGF variants inhibit angiogenesis and tumour progression, and NaB is considered an anticancer drug, our findings may have clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Osinsky S, Zavelevich M, Vaupel P (2009) Tumor hypoxia and malignant progression. Exp Oncol 31:80–86

    CAS  PubMed  Google Scholar 

  2. Folkman J (2003) Angiogenesis and apoptosis. Semin Cancer Biol 13:159–167

    Article  CAS  PubMed  Google Scholar 

  3. Miller-Kasprzak E, Jagodziński PP (2007) Endothelial progenitor cells as a new agent contributing to vascular repair. Arch Immunol Ther Exp 55:247–259

    Article  CAS  Google Scholar 

  4. Rumpold H, Wolf D, Koeck R et al (2004) Endothelial progenitor cells: a source for therapeutic vasculogenesis? J Cell Mol Med 8:509–518

    Article  PubMed  Google Scholar 

  5. Zhang C, Zhang X, Liu C et al (2009) Expression of endostatin mediated by a novel non-viral delivery system inhibits human umbilical vein endothelial cells in vitro. Mol Biol Rep doi:10.1007/s11033-009-9600-9

  6. Chung N, Jee BK, Chae SW et al (2009) HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol Biol Rep 36:227–235

    Article  CAS  PubMed  Google Scholar 

  7. Tang J, Wang J, Song H et al (2009) Adenovirus-mediated stromal cell-derived factor-1 alpha gene transfer improves cardiac structure and function after experimental myocardial infarction through angiogenic and antifibrotic actions. Mol Biol Rep. doi:10.1007/s11033-009-9642-z

  8. Bai X, Liang Z, Zhao S et al (2009) The porcine ANG, RNASE1 and RNASE6 genes: molecular cloning, polymorphism detection and the association with haematological parameters. Mol Biol Rep 36:2405–2411

    Article  CAS  PubMed  Google Scholar 

  9. Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–794

    Article  CAS  PubMed  Google Scholar 

  10. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  CAS  PubMed  Google Scholar 

  11. Onen IH, Konac E, Eroglu M et al (2008) No association between polymorphism in the vascular endothelial growth factor gene at position-460 and sporadic prostate cancer in the Turkish population. Mol Biol Rep 35:17–22

    Article  CAS  PubMed  Google Scholar 

  12. Wang T, Hu K, Ren J et al (2010) Polymorphism of VEGF-2578C/A associated with the risk and aggressiveness of nasopharyngeal carcinoma in a Chinese population. Mol Biol Rep 37:59–65

    Article  CAS  PubMed  Google Scholar 

  13. Bates DO, Cui TG, Doughty JM et al (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62:4123–4131

    CAS  PubMed  Google Scholar 

  14. Woolard J, Wang WY, Bevan HS et al (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64:7822–7835

    Article  CAS  PubMed  Google Scholar 

  15. Miller-Kasprzak E, Jagodziński PP (2008) 5-Aza-2′-deoxycytidine increases the expression of anti-angiogenic vascular endothelial growth factor 189b variant in human lung microvascular endothelial cells. Biomed Pharmacother 62:158–163

    Article  CAS  PubMed  Google Scholar 

  16. Rennel ES, Varey AH, Churchill AJ et al (2009) VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo. Br J Cancer 101:1183–1193

    Article  CAS  PubMed  Google Scholar 

  17. Qiu Y, Hoareau-Aveilla C, Oltean S et al (2009) The anti-angiogenic isoforms of VEGF in health and disease. Biochem Soc Trans 37:1207–1213

    Article  CAS  PubMed  Google Scholar 

  18. Thiagalingam S, Cheng KH, Lee HJ et al (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100

    Article  CAS  PubMed  Google Scholar 

  19. Luczak MW, Jagodzinski PP et al (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44:143–154

    CAS  PubMed  Google Scholar 

  20. Pajak B, Orzechowski A, Gajkowska B (2007) Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells. Adv Med Sci 52:83–88

    CAS  PubMed  Google Scholar 

  21. Chang JG, Hsieh-Li HM, Jong YJ et al (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98:9808–9813

    Article  CAS  PubMed  Google Scholar 

  22. Brichta L, Hofmann Y, Hahnen E et al (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489

    Article  CAS  PubMed  Google Scholar 

  23. Nissim-Rafinia M, Aviram M, Randell SH et al (2004) Restoration of the cystic fibrosis transmembrane conductance regulator function by splicing modulation. EMBO Rep 5:1071–1077

    Article  CAS  PubMed  Google Scholar 

  24. Piotrowska H, Jagodzinski PP (2007) Trichostatin A, sodium butyrate, and 5-aza-2′-deoxycytidine alter the expression of glucocorticoid receptor alpha and beta isoforms in Hut-78 T- and Raji B-lymphoma cell lines. Biomed Pharmacother 61:451–454

    Article  CAS  PubMed  Google Scholar 

  25. Piotrowska H, Jagodzinski PP (2009) Glucocorticoid receptor alpha and beta variant expression is associated with ASF/SF2 splicing factor upregulation in HT-29 colon cancer and MCF-7 breast carcinoma cells. Arch Med Res 40:156–162

    Article  CAS  PubMed  Google Scholar 

  26. Perrin RM, Konopatskaya O, Qiu Y et al (2005) Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia 48:2422–2447

    Article  CAS  PubMed  Google Scholar 

  27. Kieda C, Paprocka M, Krawczenko A et al (2002) New human microvascular endothelial cell lines with specific adhesion molecules phenotypes. Endothelium 9:247–261

    Article  CAS  PubMed  Google Scholar 

  28. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  29. Szabo A, Perou CM, Karaca M (2004) Statistical modeling for selecting housekeeper genes. Genome Biol 5:R59

    Article  PubMed  Google Scholar 

  30. Debicki S, Jagodzinski PP (2009) Apicidin decreases phospholipase C gamma-1 transcript and protein in Hut-78 T lymphoma cells. Biomed Pharmacother 63:543–547

    Article  CAS  PubMed  Google Scholar 

  31. Díaz R, Peña C, Silva J et al (2008) p73 Isoforms affect VEGF, VEGF165b and PEDF expression in human colorectal tumors: VEGF165b downregulation as a marker of poor prognosis. Int J Cancer 123:1060–1067

    Article  PubMed  Google Scholar 

  32. Pritchard-Jones RO, Dunn DB, Qiu Y et al (2007) Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma. Br J Cancer 97:223–230

    Article  CAS  PubMed  Google Scholar 

  33. Rennel ES, Hamdollah-Zadeh MA, Wheatley ER et al (2008) Recombinant human VEGF165b protein is an effective anti-cancer agent in mice. Eur J Cancer 44:1883–1894

    Article  CAS  PubMed  Google Scholar 

  34. Rennel E, Waine E, Guan H et al (2008) The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice. Br J Cancer 98:1250–1257

    Article  CAS  PubMed  Google Scholar 

  35. Nishi M, Abe Y, Tomii Y et al (2005) Cell binding isoforms of vascular endothelial growth factor-A (VEGF189) contribute to blood flow-distant metastasis of pulmonary adenocarcinoma. Int J Oncol 26:1517–1524

    CAS  PubMed  Google Scholar 

  36. Scharlau D, Borowicki A, Habermann N et al (2009) Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 682:39–53

    Article  CAS  PubMed  Google Scholar 

  37. Lu Q, Yang YT, Chen CS et al (2004) Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J Med Chem 47:467–474

    Article  CAS  PubMed  Google Scholar 

  38. Gozzini A, Rovida E, Dello Sbarba P et al (2003) Butyrates, as a single drug, induce histone acetylation and granulocytic maturation: possible selectivity on core binding factor-acute myeloid leukemia blasts. Cancer Res 63:8955–8961

    CAS  PubMed  Google Scholar 

  39. Blank-Porat D, Gruss-Fischer T, Tarasenko N et al (2007) The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett 256:39–48

    Article  CAS  PubMed  Google Scholar 

  40. Louis M, Rosato RR, Brault L et al (2004) The histone deacetylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress. Int J Oncol 25:1701–1711

    CAS  PubMed  Google Scholar 

  41. Terao Y, Nishida J, Horiuchi S et al (2001) Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells. Int J Cancer 94:257–267

    Article  CAS  PubMed  Google Scholar 

  42. Roy MJ, Dionne S, Marx G et al (2009) In vitro studies on the inhibition of colon cancer by butyrate and carnitine. Nutrition 25:1193–1201

    Article  CAS  PubMed  Google Scholar 

  43. Park JK, Cho CH, Ramachandran S et al (2006) Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3-kinase inhibition in the human cervical cancer cell-line. Cancer Res Treat 38:112–117

    Article  PubMed  Google Scholar 

  44. Sonnemann J, Hartwig M, Plath A et al (2006) Histone deacetylase inhibitors require caspase activity to induce apoptosis in lung and prostate carcinoma cells. Cancer Lett 232:148–160

    Article  CAS  PubMed  Google Scholar 

  45. Choi YH (2006) Apoptosis of U937 human leukemic cells by sodium butyrate is associated with inhibition of telomerase activity. Int J Oncol 29:1207–1312

    CAS  PubMed  Google Scholar 

  46. Xi L, Chen G, Zhou J et al (2006) Inhibition of telomerase enhances apoptosis induced by sodium butyrate via mitochondrial pathway. Apoptosis 11:789–798

    Article  CAS  PubMed  Google Scholar 

  47. Zgouras D, Wächtershäuser A, Frings D et al (2003) Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochem Biophys Res Commun 300:832–838

    Article  CAS  PubMed  Google Scholar 

  48. Kim SH, Kim KW, Jeong JW (2007) Inhibition of hypoxia-induced angiogenesis by sodium butyrate, a histone deacetylase inhibitor, through hypoxia-inducible factor-1alpha suppression. Oncol Rep 17:793–797

    PubMed  Google Scholar 

  49. Ogawa H, Rafiee P, Fisher PJ et al (2003) Sodium butyrate inhibits angiogenesis of human intestinal microvascular endothelial cells through COX-2 inhibition. FEBS Lett 554:88–94

    Article  CAS  PubMed  Google Scholar 

  50. Tarasenko N, Nudelman A, Tarasenko I et al (2008) Histone deacetylase inhibitors: the anticancer, antimetastatic and antiangiogenic activities of AN-7 are superior to those of the clinically tested AN-9 (Pivanex). Clin Exp Metastasis 25:703–716

    Article  CAS  PubMed  Google Scholar 

  51. Pellizzaro C, Coradini D, Daidone MG (2002) Modulation of angiogenesis-related proteins synthesis by sodium butyrate in colon cancer cell line HT29. Carcinogenesis 23:735–740

    Article  CAS  PubMed  Google Scholar 

  52. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a grant No 502-01-01124182-07474, Poznań University of Medical Sciences. We would like to acknowledge Dr. Margarita Lianeri for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Jagodziński.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciura, J., Jagodziński, P.P. Butyrate increases the formation of anti-angiogenic vascular endothelial growth factor variants in human lung microvascular endothelial cells . Mol Biol Rep 37, 3729–3734 (2010). https://doi.org/10.1007/s11033-010-0026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0026-1

Keywords

Navigation