Skip to main content
Log in

HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human bone marrow-derived mesenchymal stem cells (hMSCs) have been shown to possess multilineage differentiation potential. HOX genes function in transcriptional regulators, and are involved in stem cell differentiation. The aim of the present study was to demonstrate HOX genes that are related to angiogenesis. To identify the expression patterns of 37 HOX genes in the endothelial cell differentiation of hMSCs, we analyzed HOX genes through profiling with multiplex RT-PCR. The results showed that the expression patterns of four HOX genes, HOXA7, HOXB3, HOXA3, and HOXB13, significantly changed during angiogenesis. The expression levels of HOXA7 and HOXB3 were dramatically increased, whereas those of HOXA3 and HOXB13 were decreased during endothelial cell differentiation. When further analysis of the expressions of these HOX genes was performed with real-time PCR and an immunoblot assay, the expression patterns were also found to be well-matched with the results of multiplex RT-PCR. Here, we report that HOXA7, HOXB3, HOXA3, and HOXB13 might be involved in the angiogenesis of hMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

hMSCs:

Human mesenchymal stem cells

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

VEGF:

Vascular endothelial growth factor

EGF:

Epidermal growth factor

PDGF:

Platelet-derived growth factor

TGF-β1:

Transforming growth factor-β1

RT-PCR:

Reverse transcriptase-polymerase chain reaction

mAb:

Monoclonal antibody

pAb:

Polyclonal antibody

VE-cadherin:

Vascular/endothelial-cadherin

vWF:

von Willebrand factor

References

  1. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520

    CAS  Google Scholar 

  2. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  3. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  4. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  5. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    PubMed  CAS  Google Scholar 

  6. Duprez DM, Kostakopoulou K, Francis-West PH, Tickle C, Brickell PM (1996) Activation of Fgf-4 and HoxD gene expression by BMP-2 expressing cells in the developing chick limb. Development 122:1821–1828

    PubMed  CAS  Google Scholar 

  7. Goff DJ, Tabin CJ (1997) Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development 124:627–636

    PubMed  CAS  Google Scholar 

  8. van den Akker E, Fromental-Ramain C, de Graaff W, Le Mouellic H, Brulet P, Chambon P, Deschamps J (2001) Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. Development 128:1911–1921

    PubMed  Google Scholar 

  9. Wang W, Lufkin T (2005) Hmx homeobox gene function in inner ear and nervous system cell-type specification and development. Exp Cell Res 306:373–379

    Article  PubMed  CAS  Google Scholar 

  10. Malicki J, Cianetti LC, Peschle C, McGinnis W (1992) A human HOX4B regulatory element provides head-specific expression in Drosophila embryos. Nature 358:345–347

    Article  PubMed  CAS  Google Scholar 

  11. Lei H, Juan AH, Kim MS, Ruddle FH (2006) Identification of a Hoxc8-regulated transcriptional network in mouse embryo fibroblast cells. Proc Natl Acad Sci 103:10305–10309

    Article  PubMed  CAS  Google Scholar 

  12. Wacker SA, McNulty CL, Durston AJ (2004) The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4. Dev Biol 266:123–137

    Article  PubMed  CAS  Google Scholar 

  13. Akin ZN, Nazarali AJ (2005) Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 25:697–741

    Article  PubMed  CAS  Google Scholar 

  14. Abate-Shen C (2002) Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2:777–785

    Article  PubMed  CAS  Google Scholar 

  15. Thorsteinsdottir U, Sauvageau G, Humphries RK (1997) Hox homeobox genes as regulators of normal and leukemic hematopoiesis. Hematol Oncol Clin North Am 11:1221–1237

    Article  PubMed  CAS  Google Scholar 

  16. van Oostveen J, Bijl J, Raaphorst F, Walboomers J, Meijer C (1999) The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 13:1675–1690

    Article  PubMed  Google Scholar 

  17. Mace KA, Hansen SL, Myers C, Young DM, Boudreau N (2005) HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J Cell Sci 118:2567–2577

    Article  PubMed  CAS  Google Scholar 

  18. Myers C, Charboneau A, Boudreau N (2000) Homeobox B3 promotes capillary morphogenesis and angiogenesis. J Cell Biol 148:343–351

    Article  PubMed  CAS  Google Scholar 

  19. Myers C, Charboneau A, Cheung I, Hanks D, Boudreau N (2002) Sustained expression of homeobox D10 inhibits angiogenesis. Am J Pathol 161:2099–2109

    PubMed  CAS  Google Scholar 

  20. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, Marks J, Sukumar S (2000) Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405:974–978

    Article  PubMed  CAS  Google Scholar 

  21. Valerius MT, Patterson LT, Feng Y, Potter SS (2002) Hoxa 11 is upstream of Integrin alpha8 expression in the developing kidney. Proc Natl Acad Sci 99:8090–8095

    Article  PubMed  CAS  Google Scholar 

  22. Boudreau NJ, Varner JA (2004) The homeobox transcription factor Hox D3 promotes integrin alpha5beta1 expression and function during angiogenesis. J Biol Chem 279:4862–4868

    Article  PubMed  CAS  Google Scholar 

  23. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  PubMed  CAS  Google Scholar 

  24. Gang EJ, Jeong JA, Han S, Yan Q, Jeon CJ, Kim H (2006) In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy 8:215–227

    Article  PubMed  CAS  Google Scholar 

  25. Jee BK, Park KM, Surendran S, Lee WK, Han CW, Kim YS, Lim Y (2006) KAI1/CD82 suppresses tumor invasion by MMP9 inactivation via TIMP1 up-regulation in the H1299 human lung carcinoma cell line. Biochem Biophys Res Commun 342:655–661

    Article  PubMed  CAS  Google Scholar 

  26. Wang G, Brennan C, Rook M, Wolfe JL, Leo C, Chin L, Pan H, Liu WH, Price B, Makrigiorgos GM (2004) Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples. Nucleic Acids Res 32:e76

    Article  PubMed  Google Scholar 

  27. Choi CB, Cho YK, Prakash KV, Jee BK, Han CW, Paik YK, Kim HY, Lee KH, Chung N, Rha HK (2006) Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 350:138–146

    Article  PubMed  CAS  Google Scholar 

  28. Zhao Y, Westphal H (2002) Homeobox genes and human genetic disorders. Curr Mol Med 2:13–23

    Article  PubMed  CAS  Google Scholar 

  29. Holland PW, Garcia-Fernandez J (1996) Hox genes and chordate evolution. Dev Biol 173:382–395

    Article  PubMed  CAS  Google Scholar 

  30. Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA (1997) Induction of the angiogenic phenotype by Hox D3. J Cell Biol 139:257–264

    Article  PubMed  CAS  Google Scholar 

  31. Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W, Boudreau N (2005) A role for Hox A5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol 3:240–252

    Article  PubMed  CAS  Google Scholar 

  32. Kuliev A, Kukharenko V, Morozov G, Freidine M, Rechitsky S, Verlinsky O, Ivakhnenko V, Gindilis V, Strom C, Verlinsky Y (1996) Expression of homebox-containing genes in human preimplantation development and in embryos with chromosomal aneuploidies. J Assist Reprod Genet 13:177–181

    Article  PubMed  CAS  Google Scholar 

  33. Naora H, Montz FJ, Chai CY, Roden RB (2001) Aberrant expression of homeobox gene HOXA7 is associated with mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc Natl Acad Sci 98:15209–15214

    Article  PubMed  CAS  Google Scholar 

  34. Ota T, Choi KB, Gilks CB, Leung PC, Auersperg N (2006) Cell type- and stage-specific changes in HOXA7 protein expression in human ovarian folliculogenesis: possible role of GDF-9. Differentiation 74:1–10

    Article  PubMed  CAS  Google Scholar 

  35. Nakamura T, Largaespada DA, Shaughnessy JD, Jenkins NA, Copeland NG (1996) Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet 12:149–153

    Article  PubMed  CAS  Google Scholar 

  36. Afonja O, Smith JE, Cheng DM, Goldenberg AS, Amorosi E, Shimamoto T, Nakamura S, Ohyashiki K, Ohyashiki J, Toyama K, Takeshita K (2000) MEIS1 and HOXA7 genes in human acute myeloid leukemia. Leuk Res 24:849–855

    Article  PubMed  CAS  Google Scholar 

  37. Leroy P, Berto F, Bourget I, Rossi B (2004) Down-regulation of Hox A7 is required for cell adhesion and migration on fibronectin during early HL-60 monocytic differentiation. J Leukoc Biol 75:680–688

    Article  PubMed  CAS  Google Scholar 

  38. Hansen SL, Myers CA, Charboneau A, Young DM, Boudreau N (2003) HoxD3 accelerates wound healing in diabetic mice. Am J Pathol 163:2421–2431

    PubMed  CAS  Google Scholar 

  39. Cazal C, Sobral AP, de Almeida FC, das Gracas Silva-Valenzuela M, Durazzo MD, Nunes FD (2006) The homeobox HOXB13 is expressed in human minor salivary gland. Oral Dis 12:424–427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Seoul Research and Business Development Program (10548), the Korea Research Foundation Grant (KRF-2006-013-F00018), and scholarship support from the Brain Korea 21 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kweon Haeng Lee.

Additional information

Namhyun Chung and Bo Keun Jee contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, N., Jee, B.K., Chae, S.W. et al. HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol Biol Rep 36, 227–235 (2009). https://doi.org/10.1007/s11033-007-9171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9171-6

Keywords

Navigation