Skip to main content

Advertisement

Log in

Inhibition of telomerase enhances apoptosis induced by sodium butyrate via mitochondrial pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Telomerase activation represents an early step in carcinogenesis. Increased telomerase activity in cervical cancer suggests a potential target for the development of novel therapeutic drugs. The aim of this study is to investigate the impact of telomerase activity on the biological features of HeLa cells and the possible mechanisms of enhanced apoptosis rate induced by sodium butyrate after telomerase inhibition. We introduced vectors encoding dominate negative (DN)-hTERT, wild-type (WT)-hTERT, or a control vector expressing only a drug-resistance marker into HeLa cells. Thus we assessed the biological effects of telomerase activity on telomere length, cell proliferation, chemosensitivity and radiosensitivity. In order to understand the mechanisms in which DN-hTERT enhances the apoptosis induced by sodium butyrate, we detected the release status of cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Ectopic expression of DN-hTERT resulted in inhibition of telomerase activity, reduction of telomere length, decreased colony formation ability, and loss of tumorigenicity in nude mice. Moreover, DN-hTERT transfected HeLa cells with shortened telomeres were more susceptible to multiple chemotherapeutic agents and radiation. WT-hTERT transfected HeLa cells with longer telomeres exhibited resistance to radiation and chemotherapeutic agents. Our data demonstrate that elevated release level of cytochrome c and AIF from mitochondria might contribute to the enhanced apoptosis in DN-hTERT transfected HeLa cells after treatment with sodium butyrate. Inhibition of telomerase might serve as a promising adjunctive therapy combined with conventional therapy in cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harley C. Telomere loss:mitotic clock or genetic time bomb? Mutation Res 1991; 256: 271–282.

    Article  PubMed  CAS  Google Scholar 

  2. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97: 503–509.

    Article  PubMed  CAS  Google Scholar 

  3. Greider CW. Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci USA 1998; 95: 90–92.

    Article  PubMed  CAS  Google Scholar 

  4. Greaves M. Is telomerase activity in cancer due to selection of stem cells and differentiation arrest? Trends Genet 1996; 12: 127–128.

    Article  PubMed  CAS  Google Scholar 

  5. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114: 241–253.

    Article  PubMed  CAS  Google Scholar 

  6. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up regulated in tumor cells and immortalization. Cell 1997; 90: 785–795.

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 955–959.

    Article  PubMed  CAS  Google Scholar 

  8. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    Article  PubMed  CAS  Google Scholar 

  9. Morales CP, Holt SE, Ouellette M, et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 1999; 21: 111–114.

    Article  CAS  Google Scholar 

  10. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84–88.

    Article  PubMed  CAS  Google Scholar 

  11. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature 1999; 400: 464–468.

    Article  PubMed  CAS  Google Scholar 

  12. Kraemer K, Fuessel S, Schmidt U, et al. Antisense-mediatd hTERT inhibition specifically reduces the growth of human Bladder cancer cells. Clin Cancer Res 2003; 9: 3794–3800.

    PubMed  CAS  Google Scholar 

  13. Teng L, Specht M, Barden C, Fahey T. Antisense hTERT inhibits thyroid cancer growth. Clin Endo Meta 2003; 88: 1362–1366.

    Article  CAS  Google Scholar 

  14. Kosciolek BA, Kalantidis K, Tabler M, Rowley PT. Inhibition of telomerase activity in human cancer cells by RNA interference. Mol. Cancer Ther 2003; 2: 209–216.

    PubMed  CAS  Google Scholar 

  15. Folini M, Pennati M, Zaffaroni N. Targeting human telomerase by antisense oligonucleotides and ribozymes. Curr Med Chem-Anti-Cancer Agents 2002; 2: 605–612.

    Article  CAS  Google Scholar 

  16. Zhang XL, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 1999; 13: 2388–2399.

    Article  PubMed  CAS  Google Scholar 

  17. Hahn WC, Stewart SA, Brooks MW, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999; 5: 1164–1170.

    Article  PubMed  CAS  Google Scholar 

  18. Misawa M, Tauchi T, Sashida G, et al. Inhibition of human telomerase enhances the effect of chemotherapeutic agents in lung cancer cells. Int J Oncol 2002; 21: 1087–1092.

    PubMed  CAS  Google Scholar 

  19. Zhang Y, Cao EH, Liang XQ, Qin JF. Increasing sensitivity to arsenic trioxide-induced apoptosis by altered telomere state. Eur JPharmacol 2003; 474: 141–147.

    Article  CAS  Google Scholar 

  20. Kondo Y, Kondo S, Tanaka Y, Haqqi T, Barna BP, Cowell JK. Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene 1998; 16: 2243–2248.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang P, Chan S, Fu W, Mendoza M, Mattson M. TERT suppresses apoptotis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and14-3-3 protein binding ability. FASEB J 2003; 17: 767–769.

    PubMed  CAS  Google Scholar 

  22. Pandita T, Joseph L. Role of telomerase in radiocurability (Review). Oncology Reports 2003; 10: 263–270.

    PubMed  CAS  Google Scholar 

  23. Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 2005; 103: 1551–1560.

    Article  PubMed  CAS  Google Scholar 

  24. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005; 55: 178–194.

    Article  PubMed  Google Scholar 

  25. Bandyopadhyay D, Mishra A, Medrano EE. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res 2004; 64: 7706–7710.

    Article  PubMed  CAS  Google Scholar 

  26. Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY. Rho/Rhotekin-mediated NF-kappaB activation confers resistance to apoptosis. Oncogene 2004; 23: 8731–8742.

    Article  PubMed  CAS  Google Scholar 

  27. Emanuele S, D'Anneo A, Bellavia G, et al. Sodium butyrate induces apoptosis in human hepatoma cells by a mitochondria/caspase pathway, associated with degradation of beta-catenin, pRb and Bcl-XL. Eur. J Cancer 2004; 40: 1441–1452.

    Article  PubMed  CAS  Google Scholar 

  28. Xi L, Wu MF, Feng YD, et al. Seletive apoptosis in HeLa cells induced by sodium butyrate and its mechanism. ACTA Academiae Medicine Science 2003; 25: 401–405.

    CAS  Google Scholar 

  29. Xi L, Wu MF, Wu JH, et al. Telomerase inhibition during apoptosis induced by sodium butyrate. Zhonghua Zhongliu Za Zhi 2005; 27: 9–12.

    CAS  Google Scholar 

  30. Gallego MA, Joseph B, Hemstrom TH, et al. Apoptosis-inducing factor determines the chemoresistance of non-small-cell lung carcinomas. Oncogene 2004; 23: 6282–6291.

    Article  PubMed  CAS  Google Scholar 

  31. Lee K, Rudolph L, Ju Y, et al. Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci USA 2001; 98: 3381–3386.

    Article  PubMed  CAS  Google Scholar 

  32. Ramirez R, Carracedo J, Jimenez R, et al. Massive telomere loss is an early event of DNA Damage-induced apoptosis. J Biol Chem 2003; 278: 836–842.

    Article  PubMed  CAS  Google Scholar 

  33. Jarboe EA, Liaw KL, Thompson LC, et al. Analysis of telomerase as a diagnostic biomarker of cervical dysplasia and carcinoma. Oncogene 2002; 21: 664–673.

    Article  PubMed  CAS  Google Scholar 

  34. Takakura M, Kyo S, Kanaya T, Tanaka M, Inoue M. Expression of human telomerase subunits and correlation with telomerase activity in cervix cancer. Cancer Res 1998; 58: 1558–1561.

    PubMed  CAS  Google Scholar 

  35. Snijders PJ, van Duin M, Walboomers JM, et al. Telomerase activity exclusively in cervical carcinomas and a subset of cervical intraepithelial Neoplasia Grade lesions: strong association with elevated messenger RNA levels of its catalytic subunit and high-risk human papillomavirus DNA. Cancer Res 1998; 58: 3812–3818.

    PubMed  CAS  Google Scholar 

  36. Wisman G, Knol A, Helder M, Krans M, et al. Telomerase in relation to clinicopathologic prognostic factors and survival in cervix cancer. Int J Cancer 2001; 91: 658–664.

    Article  PubMed  CAS  Google Scholar 

  37. Shin KH, Kang MK, Dicterow E, Kameta A, Baluda MA, Park NH. Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity. Clin Cancer Res 2004; 10: 2551–2560.

    Article  PubMed  CAS  Google Scholar 

  38. Louis M, Rosato RR, Brault L, et al. The histone deacetylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress. Int J Oncol 2004; 25: 1701–1711.

    PubMed  CAS  Google Scholar 

  39. Dawson VL, Dawson TM. Deadly Conversations: Nuclear-Mitochondrial Cross-Talk. J Bioenerg Biomembr 2004; 36: 287–294.

    Article  PubMed  CAS  Google Scholar 

  40. Corbiere C, Liagre B, Terro F, Beneytout JL. Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res 2004; 14: 188–196.

    Article  PubMed  CAS  Google Scholar 

  41. Diaz GD, Li Q, Dashwood RH. Caspase-8 and apoptosis-inducing factor mediate a cytochrome c-independent pathway of apoptosis in human colon cancer cells induced by the dietary phytochemical chlorophyllin. Cancer Res 2003; 63: 1254–1261.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ma.

Additional information

Both of them contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, L., Chen, G., Zhou, J. et al. Inhibition of telomerase enhances apoptosis induced by sodium butyrate via mitochondrial pathway. Apoptosis 11, 789–798 (2006). https://doi.org/10.1007/s10495-006-5701-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-5701-2

Keywords

Navigation