Skip to main content
Log in

Effect of high hydrostatic pressure on hydration and activity of ribozymes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Formation and stabilization of RNA structure in the cell depends on its interaction with solvent and metal ions. High hydrostatic pressure (HHP) is a convenient tool in an analysis of the role of small molecules in the structure stabilization of biological macromolecules. Analysis of HHP effect and various concentrations of ions showed that water induce formation of the active ribozyme structure. So, it is clear that water is the driving force of conformational changes of nucleic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HHP:

High hydrostatic pressure

AP:

Atmospheric pressure

HH:

Hammerhead

FTIR:

Fourier transform infrared spectroscopy

References

  1. Westhof E, Dumas P, Moras D (1988) Hydration of transfer RNA molecules: a crystallographic study. Biochimie 70(2):145–165

    Article  CAS  PubMed  Google Scholar 

  2. Auffinger P, Westhof E (2000) RNA solvation: a molecular dynamics simulation perspective. Biopolymers 56(4):266–274

    Article  CAS  PubMed  Google Scholar 

  3. Sorin EJ, Rhee YM, Pande VS (2005) Does water play a structural role in the folding of small nucleic acids? Biophys J 88(4):2516–2524

    Article  CAS  PubMed  Google Scholar 

  4. Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE (2006) Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. Biochemistry 45(3):686–700

    Article  CAS  PubMed  Google Scholar 

  5. Spackova N, Sponer J (2006) Molecular dynamics simulations of sarcin-ricin rRNA motif. Nucleic Acids Res 34(2):697–708

    Article  CAS  PubMed  Google Scholar 

  6. Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, Sponer J (2006) Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme. Biophys J 91(2):626–638

    Article  CAS  PubMed  Google Scholar 

  7. Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34:221–243

    Article  CAS  PubMed  Google Scholar 

  8. Doudna JA, Lorsch JR (2005) Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 12(5):395–402

    Article  CAS  PubMed  Google Scholar 

  9. Westhof E (2007) A tale in molecular recognition: the hammerhead ribozyme. J Mol Recognit 20(1):1–3

    Article  CAS  PubMed  Google Scholar 

  10. He P, Zhu D, Hu JJ, Peng J, Chen LS, Lu GX (2010) pcDNA3.1(-)-mediated ribozyme targeting of HER-2 suppresses breast cancer tumor growth. Mol Biol Rep 37(3):1597–1604

    Article  CAS  PubMed  Google Scholar 

  11. Shilpakala SR, Raghunathan M (2009) Impact of DNA gyrase inhibition by antisense ribozymes on rec A in E. coli. Mol Biol Rep 36(7):1937–1942

    Article  CAS  PubMed  Google Scholar 

  12. Rao SS, Savithri HS, Raghunathan M (2008) Down regulation of gyrase A gene expression in E. coli by antisense ribozymes using RT-PCR. Mol Biol Rep 35(4):575–578

    Article  CAS  PubMed  Google Scholar 

  13. Nelson JA, Uhlenbeck OC (2006) When to believe what you see. Mol Cell 23(4):447–450

    Article  CAS  PubMed  Google Scholar 

  14. Murray JB, Seyhan AA, Walter NG, Burke JM, Scott WG (1998) The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol 5(10):587–595

    Article  CAS  PubMed  Google Scholar 

  15. Lai MM (1995) The molecular biology of hepatitis delta virus. Annu Rev Biochem 64:259–286

    Article  CAS  PubMed  Google Scholar 

  16. Ferre-D’Amare AR, Zhou K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature 395(6702):567–574

    Article  PubMed  Google Scholar 

  17. Ferre-D’Amare AR, Zhou K, Doudna JA (1998) A general module for RNA crystallization. J Mol Biol 279(3):621–631

    Article  PubMed  Google Scholar 

  18. Ke A, Zhou K, Ding F, Cate JH, Doudna JA (2004) A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429(6988):201–205

    Article  CAS  PubMed  Google Scholar 

  19. Blount K, Uhlenbeck OC (2005) The structure-function dilemma of the hammerhead ribozyme. Annu Rev Biophys Biomol Struct 34:415–440

    Article  CAS  PubMed  Google Scholar 

  20. Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372(6501):68–74

    Article  CAS  PubMed  Google Scholar 

  21. Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126(2):309–320

    Article  CAS  PubMed  Google Scholar 

  22. Martick M, Lee T-S, York DM, Scott WG (2008) Solvent structure and hammerhead ribozyme catalysis. Chem Biol 15(4):332–342

    Article  CAS  PubMed  Google Scholar 

  23. Lee TS, Silva Lopez CS, Giambasu GM, Martick M, Scott WG, York DM (2008) Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation. J Am Chem Soc 130(10):3053–3064

    Article  CAS  PubMed  Google Scholar 

  24. Thomas JM, Perrin DM (2009) Probing general acid catalysis in the hammerhead ribozyme. J Am Chem Soc 131(3):1135–1143

    Article  CAS  PubMed  Google Scholar 

  25. Thomas JM, Perrin DM (2009) Probing general base catalysis in the hammerhead ribozyme. J Am Chem Soc 130(46):15467–15475

    Article  Google Scholar 

  26. Rupert PB, Ferre-D’Amare AR (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410(6830):780–786

    Article  CAS  PubMed  Google Scholar 

  27. Zhuang X, Kim H, Pereira MJ, Babcock HP, Walterand NG, Chu S (2002) Correlating structural dynamics and function in single ribozyme molecules. Science 296(5572):1473–1476

    Article  CAS  PubMed  Google Scholar 

  28. Rhodes MM, Reblova K, Sponer J, Walter NG (2006) Trapped water molecules are essential to structural dynamics and function of a ribozyme. Proc Natl Acad Sci USA 103(36):13380–13385

    Article  CAS  PubMed  Google Scholar 

  29. Frank RA, Titman CM, Pratap JV, Luisi BF, Perham RN (2004) A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306(5697):872–876

    Article  CAS  PubMed  Google Scholar 

  30. Fedoruk-Wyszomirska A, Wyszko E, Giel-Pietraszuk M, Barciszewska M, Barciszewski J (2007) High pressure proof a specificity of RNA catalysis. Int J Biol Macromol 41(1):30–35

    Article  CAS  PubMed  Google Scholar 

  31. Fedoruk-Wyszomirska A, Giel-Pietraszuk M, Wyszko E, Szymański M, Ciesiołka J, Barciszewska MZ, Barciszewski J (2009) The mechanism of acidic hydrolysis of esters explains the HDV ribozyme activity. Mol Biol Rep 36(7):1647–1650

    Article  CAS  PubMed  Google Scholar 

  32. Heremans K (1982) High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng 11:1–21

    Article  CAS  PubMed  Google Scholar 

  33. Tobe S, Heams T, Vergne J, Herve G, Maurel MC (2005) The catalytic mechanism of hairpin ribozyme studied by hydrostatic pressure. Nucl Acids Res 33(8):2557–2564

    Article  CAS  PubMed  Google Scholar 

  34. Macgregor RB Jr (1998) Effect of hydrostatic pressure on nucleic acids. Biopolymers 48(4):253–263

    Article  CAS  PubMed  Google Scholar 

  35. Macgregor RB Jr (2002) The interactions of nucleic acids at elevated hydrostatic pressure. Biochim Biophys Acta 1595(1–2):266–276

    CAS  PubMed  Google Scholar 

  36. Rayan G, Macgregor RB Jr (2009) Pressure-induced helix–coil transition of DNA copolymers is linked to water activity. Biophys Chem 144(1–2):62–66

    Article  CAS  PubMed  Google Scholar 

  37. Hummer G, Garde S, García AE, Paulaitis ME, Pratt LR (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci USA 95(4):1552–1555

    Article  CAS  PubMed  Google Scholar 

  38. Perbandt M, Barciszewska MZ, Betzel C, Erdmann VA, Barciszewski J (2003) A critical role of water in the specific cleavage of the anticodon loop of some eukaryotic methionine initiator tRNAs. Mol Biol Rep 30(1):27–31

    Article  CAS  PubMed  Google Scholar 

  39. O’Rear JL, Wang S, Feig AL, Beigelman L, Uhlenbeck OC, Herschlag D (2001) Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations. RNA 7(4):537–545

    Article  PubMed  Google Scholar 

  40. Curtis EA, Bartel DP (2001) The hammerhead cleavage reaction in monovalent cations. RNA 7(4):546–552

    Article  CAS  PubMed  Google Scholar 

  41. Smith MD, Mehdizadeh R, Olive JE, Collins RA (2008) The ionic environment determines ribozyme cleavage rate by modulation of nucleobase pKa. RNA 14(9):1942–1949

    Article  CAS  PubMed  Google Scholar 

  42. Leberman R, Soper A (1995) Effect of high salt concentration on water structure. Nature 378(6555):364–366

    Article  CAS  PubMed  Google Scholar 

  43. Collins KD (1997) Charge density-dependant strength of hydration and biological structure. Biophys J 72(1):65–76

    Article  CAS  PubMed  Google Scholar 

  44. Hribar B, Southall NT, Vlachy V, Dill KA (2002) How ions affect the structure of water. J Am Chem Soc 124(421):12302–12311

    Article  CAS  PubMed  Google Scholar 

  45. Markus Y (2005) Electrostriction, ion solvation, and solvent release on ion pairing. J Phys Chem B 109(39):18541–18549

    Article  Google Scholar 

  46. Cheng Y, Korolev N, Nordenskiold L (2006) Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study. Nucl Acids Res 34(2):686–696

    Article  CAS  PubMed  Google Scholar 

  47. Wilton DJ, Ghosh M, Chary KVA, Akasaka K, Williamson MP (2008) Structural change in a B-DNA helix with hydrostatic pressure. Nucl Acids Res 36(12):4032–4037

    Article  CAS  PubMed  Google Scholar 

  48. Giel-Pietraszuk M, Barciszewski J (2005) A nature of conformational changes of yeast tRNAPhe. High hydrostatic pressure effects. Int J Biol Macromol 37(3):109–114

    Article  CAS  PubMed  Google Scholar 

  49. Romer R, Hach R (1975) tRNA conformation and magnesium binding. A study of yeast phenylalanine-specific tRNA by fluorescent indicator and differential melting curves. Eur J Biochem 55(1):271–284

    Article  CAS  PubMed  Google Scholar 

  50. Forster C, Brauer ABE, Brode S, Furste JP, Betzel C, Erdmann VA (2007) tRNASer acceptor stem: conformation and hydration of a microhelix in a crystal structure at 1.8Å resolution. Acta Cryst D63:1154–1161

    Google Scholar 

  51. Auffinger P, Westhof E (2001) Water and ion binding around r(UpA)12 and d(TpA)12 oligomers—comparison with RNA and DNA (CpG)12 duplexes. J Mol Biol 305(5):1057–1072

    Article  CAS  PubMed  Google Scholar 

  52. Saenger W, Hunter WN, Kennard O (1986) DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324(6095):385–388

    Article  CAS  PubMed  Google Scholar 

  53. Barciszewski J, Jurczak J, Porowski S, Specht T, Erdmann VA (1999) The role of water structure in conformational changes of nucleic acids in ambient and high-pressure conditions. Eur J Biochem 260(2):293–307

    Article  CAS  PubMed  Google Scholar 

  54. Benson SW, Siebert ED (1992) A simple two-structure model for liquid water. J Am Chem Soc 114(11):4269–4276

    Article  CAS  Google Scholar 

  55. Kim KS, Dupuis M, Lie GC, Clementi E (1986) Revisiting small clusters of water molecules. Chem Phys Lett 131(6):451–456

    Article  CAS  Google Scholar 

  56. Khoshtariya DE, Zahl A, Dolidze TD, Neubrand A, van Eldik R (2004) Local dense structural heterogeneities in liquid water from ambient to 300 MPa pressure: evidence for multiple liquid-liquid transitions. Chem Phys Chem 5(9):1398–1404

    CAS  PubMed  Google Scholar 

  57. Krzyżaniak A, Sałański P, Jurczak J, Barciszewski J (1991) B-Z DNA reversible conformation changes effected by high pressure. FEBS Lett 279(1):1–4

    Article  PubMed  Google Scholar 

  58. Popenda M, Milecki J, Adamiak RW (2004) High salt solution structure of a left-handed RNA double helix. Nucl Acids Res 32(13):4044–4054

    Article  CAS  PubMed  Google Scholar 

  59. Krzyżaniak A, Barciszewski J, Furste JB, Bald R, Erdmann VA, Sałański P, Jurczak J (1994) A-Z-RNA conformational changes effected by high pressure. Int J Biol Macromol 16(3):159–162

    Article  PubMed  Google Scholar 

  60. Kierzek R (1992) Nonenzymatic hydrolysis of oligoribonucleotides. Nucl Acids Res 20(19):5079–5084

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Barciszewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giel-Pietraszuk, M., Fedoruk-Wyszomirska, A. & Barciszewski, J. Effect of high hydrostatic pressure on hydration and activity of ribozymes. Mol Biol Rep 37, 3713–3719 (2010). https://doi.org/10.1007/s11033-010-0024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0024-3

Keywords

Navigation