Skip to main content

Advertisement

Log in

Overexpression of PIP5KL1 suppresses cell proliferation and migration in human gastric cancer cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phosphatidylinositol-4-phosphate 5-kinase-like 1 (PIP5KL1), the forth member of phosphatidylinositol-4-phosphate 5-kinases (PIPKs) type I, acts as a scaffold for localization and activation of PIPKs, which mediates numerous cellular processes. However, the role of PIP5KL1 in the development of human cancer is still lacking. We therefore examined the expression of PIP5KL1 in human normal and cancer tissues by tissue microarrays (TMAs). Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence imaging analysis were used to testify the mRNA and protein levels of PIP5KL1 in human gastric cancer cell line (BGC823). The cell proliferation was investigated with 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay. Both wound healing and transwell migration assay were performed to study the cell migration. The phosphorylation of v-akt murine thymoma viral oncogene homolog 1 (AKT1) was determined by western immunoblot analysis. Immunostaining of gastric cancer tissue microarrays revealed a negative correlation between PIP5KL1 overexpression and gastric cancer in situ. Transient transfection PIP5KL1 induced a significant increase expression at both transcriptional and translational levels and consequent robust inhibition of proliferation (P < 0.05) and migration (P < 0.05) of BGC823 cells. Overexpression of PIP5KL1 markedly inhibited (P < 0.05) serum-induced phosphorylation of AKT1. Taken together, these studies indicate a functional negative correlation between elevated levels of PIP5KL1 and the development of human gastric cancer, suggesting that PIP5KL1 overexpression may suppress gastric cancer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toker A (2002) Phosphoinositides and signal transduction. Cell Mol Life Sci 59:761–779

    Article  CAS  PubMed  Google Scholar 

  2. Gardocki ME, Jani N, Lopes JM (2005) Phosphatidylinositol biosynthesis: biochemistry and regulation. Biochim Biophys Acta 1735:89–100

    CAS  PubMed  Google Scholar 

  3. Blero D, Payrastre B, Schurmans S, Erneux C (2007) Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Arch 455:31–44

    Article  CAS  PubMed  Google Scholar 

  4. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  CAS  PubMed  Google Scholar 

  5. Pendaries C, Tronchère H, Plantavid M, Payrastre B (2003) Phosphoinositide signaling disorders in human diseases. FEBS Lett 546:25–31

    Article  CAS  PubMed  Google Scholar 

  6. Stace C, Manifava M, Delon C, Coadwell J, Cockcroft S, Ktistakis NT (2008) PA binding of phosphatidylinositol 4-phosphate 5-kinase. Adv Enzyme Regul 48:55–72

    Article  CAS  PubMed  Google Scholar 

  7. Loijens JC, Boronenkov IV, Parker GJ, Anderson RA (1996) The phosphatidylinositol 4-phosphate 5-kinase family. Adv Enzyme Regul 36:115–140

    Article  CAS  PubMed  Google Scholar 

  8. Chang JD, Field SJ, Rameh LE, Carpenter CL, Cantley LC (2004) Identification and characterization of a phosphoinositide phosphate kinase homolog. J Biol Chem 279:11672–11679

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Gao X, Gao P, Deng W, Yu P, Ma J, Guo J, Wang X, Cheng H, Zhang C, Yu C, Ma X, Lv B, Lu Y, Shi T, Ma D (2006) Cell-based screening and validation of human novel genes associated with cell viability. J Biomol Screen 11:369–376

    Article  CAS  PubMed  Google Scholar 

  10. Luoh SW, Venkatesan N, Tripathi R (2004) Overexpression of the amplified Pip4k2beta gene from 17q11–12 in breast cancer cells confers proliferation advantage. Oncogene 23:1354–1363

    Article  CAS  PubMed  Google Scholar 

  11. Akiyama C, Shinozaki-Narikawa N, Kitazawa T, Hamakubo T, Kodama T, Shibasaki Y (2005) Phosphatidylinositol-4-phosphate 5-kinase gamma is associated with cell-cell junction in A431 epithelial cells. Cell Biol Int 29:514–520

    Article  CAS  PubMed  Google Scholar 

  12. Do GM, Choi MS, Kim HJ, Woo MN, Lee MK, Jeon SM (2008) Soy pinitol acts partly as an insulin sensitizer or insulin mediator in 3T3–L1 preadipocytes. Genes Nutr 2:359–364

    Article  CAS  PubMed  Google Scholar 

  13. Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21–30

    Article  PubMed  Google Scholar 

  14. Voduc D, Kenney C, Nielsen TO (2008) Tissue microarrays in clinical oncology. Semin Radiat Oncol 18:89–97

    Article  PubMed  Google Scholar 

  15. Verderio P, Carbone A (2009) Tissue microarrays for immunohistochemical determination of oncological biomarkers. Virchows Arch 454:353–354

    Article  PubMed  Google Scholar 

  16. Heck JN, Mellman DL, Ling K, Sun Y, Wagoner MP, Schill NJ, Anderson RA (2007) A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol 42:15–39

    Article  CAS  PubMed  Google Scholar 

  17. Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532

    Article  CAS  PubMed  Google Scholar 

  18. Coppolino MG, Dierckman R, Loijens J, Collins RF, Pouladi M, Jongstra-Bilen J, Schreiber AD, Trimble WS, Anderson R, Grinstein S (2002) Inhibition of phosphatidylinositol-4-phosphate 5-kinase I alpha impairs localized actin remodeling and suppresses phagocytosis. J Biol Chem 277:43849–43857

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto M, Hilgemann DH, Feng S, Bito H, Ishihara H, Shibasaki Y, Yin HL (2001) Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J Cell Biol 152:867–876

    Article  CAS  PubMed  Google Scholar 

  20. Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA (2002) Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420:89–93

    Article  CAS  PubMed  Google Scholar 

  21. Kisseleva M, Feng Y, Ward M, Song C, Anderson RA, Longmore GD (2005) The LIM protein Ajuba regulates phosphatidylinositol 4,5-bisphosphate levels in migrating cells through an interaction with and activation of PIPKI alpha. Mol Cell Biol 25:3956–3966

    Article  CAS  PubMed  Google Scholar 

  22. Chandrasekar I, Stradal TE, Holt MR, Entschladen F, Jockusch BM, Ziegler WH (2005) Vinculin acts as a sensor in lipid regulation of adhesion-site turnover. J Cell Sci 118(Pt 7):1461–1472

    Article  CAS  PubMed  Google Scholar 

  23. Doughman RL, Firestone AJ, Anderson RA (2003) Phosphatidylinositol phosphate kinases put PI4, 5P(2) in its place. J Membr Biol 194:77–89

    Article  CAS  PubMed  Google Scholar 

  24. Boronenkov IV, Loijens JC, Umeda M, Anderson RA (1998) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 9:3547–3560

    CAS  PubMed  Google Scholar 

  25. Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P (2002) Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature 420:85–89

    Article  CAS  PubMed  Google Scholar 

  26. Somanath PR, Razorenova OV, Chen J, Byzova TV (2006) Akt1 in endothelial cell and angiogenesis. Cell Cycle 5:512–518

    CAS  PubMed  Google Scholar 

  27. Peng SB, Peek V, Zhai Y, Paul DC, Lou Q, Xia X, Eessalu T, Kohn W, Tang S (2005) Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1alpha/CXCR4-mediated migration of epithelioid carcinoma cells. Mol Cancer Res 3:227–236

    CAS  PubMed  Google Scholar 

  28. Toker A, Yoeli-Lerner M (2006) Akt signaling and cancer: surviving but not moving on. Cancer Res 66:3963–3966

    Article  CAS  PubMed  Google Scholar 

  29. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  Google Scholar 

  30. Mejillano M, Yamamoto M, Rozelle AL, Sun HQ, Wang X, Yin HL (2001) Regulation of apoptosis by phosphatidylinositol 4, 5-bisphosphate inhibition of caspases, and caspase inactivation of phosphatidylinositol phosphate 5-kinases. J Biol Chem 276:1865–1872

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Zhi Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Zhao, M., Luo, Q. et al. Overexpression of PIP5KL1 suppresses cell proliferation and migration in human gastric cancer cells. Mol Biol Rep 37, 2189–2198 (2010). https://doi.org/10.1007/s11033-009-9701-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9701-5

Keywords

Navigation