Skip to main content
Log in

Genomic selection in tropical perennial crops and plantation trees: a review

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

To overcome the multiple challenges currently faced by agriculture, such as climate change and soil deterioration, more efficient plant breeding strategies are required. Genomic selection (GS) is crucial for the genetic improvement of quantitative traits, as it can increase selection intensity, shorten the generation interval, and improve selection accuracy for traits that are difficult to phenotype. Tropical perennial crops and plantation trees are of major economic importance and have consequently been the subject of many GS articles. In this review, we discuss the factors that affect GS accuracy (statistical models, linkage disequilibrium, information concerning markers, relatedness between training and target populations, the size of the training population, and trait heritability) and the genetic gain expected in these species. The impact of GS will be particularly strong in tropical perennial crops and plantation trees as they have long breeding cycles and constrained selection intensity. Future GS prospects are also discussed. High-throughput phenotyping will allow constructing of large training populations and implementing of phenomic selection. Optimized modeling is needed for longitudinal traits and multi-environment trials. The use of multi-omics, haploblocks, and structural variants will enable going beyond single-locus genotype data. Innovative statistical approaches, like artificial neural networks, are expected to efficiently handle the increasing amounts of heterogeneous multi-scale data. Targeted recombinations on sites identified from profiles of marker effects have the potential to further increase genetic gain. GS can also aid re-domestication and introgression breeding. Finally, GS consortia will play an important role in making the best of these opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

BLUP:

Best linear unbiased prediction

CGM:

Crop growth model

CNV:

Copy number variation

GBLUP:

Genomic BLUP

GEBV:

Genomic estimated breeding value

GEGV:

Genomic estimated genetic value

GEI:

Genotype-by-environment interactions

GS:

Genomic selection

GWAS:

Genome-wide association study

HTP:

High-throughput phenotyping

LD:

Linkage disequilibrium

MAS:

Marker-assisted selection

NIRS:

Near-infrared spectroscopy

NGS:

Next-generation sequencing

QTL:

Quantitative trait locus

RKHS:

Reproducing kernel Hilbert spaces

rrBLUP:

Random regression BLUP

SNP:

Single nucleotide polymorphism

SV:

Structural variants

References

  • Akdemir D, Isidro-Sánchez J (2019) Design of training populations for selective phenotyping in genomic prediction. Sci Rep 9:1–15

    Article  CAS  Google Scholar 

  • Alkimim ER, Caixeta ET, Sousa TV, Resende MDV, da Silva FL, Sakiyama NS, Zambolim L (2020) Selective efficiency of genome-wide selection in Coffea canephora breeding. Tree Genet Genomes 16:1–11

    Article  Google Scholar 

  • Álvarez C, Pérez E, Cros E, Lares M, Assemat S, Boulanger R, Davrieux F (2012) The use of near infrared spectroscopy to determine the fat, caffeine, theobromine and (−)-epicatechin contents in unfermented and sun-dried beans of Criollo cocoa. J near Infrared Spectrosc 20:307–315

    Article  Google Scholar 

  • Alves RS, de Resende MDV, Azevedo CF, de Rocha JRASCDO, Nunes ACP, Carneiro APS, dos Santos GA (2020) Optimization of Eucalyptus breeding through random regression models allowing for reaction norms in response to environmental gradients. Tree Gen Genomes 16:1–8

    Article  Google Scholar 

  • Aneani F, Ofori-Frimpong K (2013) An analysis of yield gap and some factors of cocoa (Theobroma cacao) yields in Ghana. Sustainable Agriculture Research 2. 2:526–2016–37857

  • Asaari MSM, Mertens S, Dhondt S, Inzé D, Wuyts N, Scheunders P (2019) Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Comput Electron Agric 162:749–758

    Article  Google Scholar 

  • Ballesta P, Maldonado C, Pérez-Rodríguez P, Mora F (2019) SNP and haplotype-based genomic selection of quantitative traits in Eucalyptus globulus. Plants (basel) 8:331. https://doi.org/10.3390/plants8090331

    Article  CAS  Google Scholar 

  • Bayer PE, Petereit J, Danilevicz MF, Anderson R, Batley J, Edwards D (2021) The application of pangenomics and machine learning in genomic selection in plants. Plant Genome 14:e20112

    Article  PubMed  Google Scholar 

  • Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25

    Article  Google Scholar 

  • Bernardo R (2020) Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Heredity 125:375–385. https://doi.org/10.1038/s41437-020-0312-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardo R (2017) Prospective targeted recombination and genetic gains for quantitative traits in maize. The Plant Genome 10(2):1–9. https://doi.org/10.3835/plantgenome2016.11.0118

    Article  CAS  Google Scholar 

  • Bertrand B, Bardil A, Baraille H, Dussert S, Doulbeau S, Dubois E, Severac D, Dereeper A, Etienne H (2015) The greater phenotypic homeostasis of the allopolyploid Coffea arabica improved the transcriptional homeostasis over that of both diploid parents. Plant Cell Physiol 56:2035–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat JA, Yu D, Bohra A, Ganie SA, Varshney RK (2021) Features and applications of haplotypes in crop breeding. Commun Biol 4:1–12

    Article  Google Scholar 

  • Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP, Prabhu KV (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221. https://doi.org/10.3389/fgene.2016.00221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blancon J, Dutartre D, Tixier M-H, Weiss M, Comar A, Praud S, Baret F (2019) A high-throughput model-assisted method for phenotyping maize green leaf area index dynamics using unmanned aerial vehicle imagery. Front Plant Sci 10:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Boote KJ, Jones JW, White JW, Asseng S, Lizaso JI (2013) Putting mechanisms into crop production models. Plant, Cell Environ 36:1658–1672

    Article  CAS  Google Scholar 

  • Borges MVV, de Oliveira Garcia J, Batista TS, Silva ANM, Baio FHR, da Silva Junior CA, de Azevedo GB, de Oliveira Sousa Azevedo GT, Teodoro LPR, Teodoro PE (2021) High-throughput phenotyping of two plant-size traits of Eucalyptus species using neural networks. J Forest Res 33(2):591–599. https://doi.org/10.1007/s11676-021-01360-6

    Article  Google Scholar 

  • Borrelli GM, Orrù L, Vita PD, Barabaschi D, Mastrangelo AM, Cattivelli L (2015) Chapter 18 - Integrated views in plant breeding: from the perspective of biotechnology. In: Sadras VO, Calderini DF (eds), Crop Physiology, 2nd edn, vol 2. Academic Press, San Diego pp 467–486. https://doi.org/10.1016/B978-0-12-417104-6.00018-2

  • Bouvet J-M, Makouanzi G, Cros D, Vigneron P (2016) Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications. Heredity (edinb) 116:146–157. https://doi.org/10.1038/hdy.2015.78

    Article  CAS  Google Scholar 

  • Brandariz SP, Bernardo R (2019a) Small ad hoc versus large general training populations for genomewide selection in maize biparental crosses. Theor Appl Genet 132:347–353. https://doi.org/10.1007/s00122-018-3222-3

    Article  CAS  PubMed  Google Scholar 

  • Brandariz SP, Bernardo R (2019b) Predicted genetic gains from targeted recombination in elite biparental maize populations. Plant Genome 12:180062. https://doi.org/10.3835/plantgenome2018.08.0062

    Article  Google Scholar 

  • Brault C, Lazerges J, Doligez A, Thomas M, Ecarnot M, Roumet P, Bertrand Y, Berger G, Pons T, François P, Le Cunff L, This P, Segura V (2022) Interest of phenomic prediction as an alternative to genomic prediction in grapevine. Plant Methods 18:108. https://doi.org/10.1186/s13007-022-00940-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauner PC, Müller D, Molenaar WS, Melchinger AE (2020) Genomic prediction with multiple biparental families. Theor Appl Genet 133:133–147

    Article  CAS  PubMed  Google Scholar 

  • Bustos-Korts D, Malosetti M, Chapman S, van Eeuwijk F (2016) Modelling of genotype by environment interaction and prediction of complex traits across multiple environments as a synthesis of crop growth modelling, genetics and statistics. Crop Systems Biology 55–82. https://doi.org/10.1007/978-3-319-20562-5_3

  • Calleja-Rodriguez A, Pan J, Funda T, Chen Z, Baison J, Isik F, Abrahamsson S, Wu HX (2020) Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine. BMC Genomics 21:796. https://doi.org/10.1186/s12864-020-07188-4

    Article  CAS  PubMed  Google Scholar 

  • Cappa EP, de Lima BM, da Silva-Junior OB, Garcia CC, Mansfield SD, Grattapaglia D (2019) Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP. Plant Sci 284:9–15

    Article  CAS  PubMed  Google Scholar 

  • Cericola F, Lenk I, Fè D, Byrne S, Jensen CS, Pedersen MG, Asp T, Jensen J, Janss L (2018) Optimized use of low-depth genotyping-by-sequencing for genomic prediction among multi-parental family pools and single plants in perennial ryegrass (Lolium perenne L.) Front Plant Sci 9:369. https://doi.org/10.3389/fpls.2018.00369

  • Chattopadhyay K, Behera L, Bagchi TB, Sardar SS, Moharana N, Patra NR, Chakraborti M, Das A, Marndi BC, Sarkar A (2019) Detection of stable QTLs for grain protein content in rice (Oryza sativa L.) employing high throughput phenotyping and genotyping platforms. Sci Rep 9:1–16

    Article  Google Scholar 

  • Chia Wong JA, Clement DPL, Mournet P, dos Santos Nascimento A, Solís Bonilla JL, Lopes UV, Pires JL, Gramacho KP (2022) A high-density genetic map from a cacao F2 progeny and QTL detection for resistance to witches’ broom disease. Tree Genet Genomes 18:1–14

    Article  Google Scholar 

  • Clark SA, Hickey JM, Daetwyler HD, van der Werf JH (2012) The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol 44:1–9. https://doi.org/10.1186/1297-9686-44-4

    Article  Google Scholar 

  • Cochard, B., 2008. Etude de la diversité génétique et du déséquilibre de liaison au sein de populations améliorées de palmier à huile (Elaeis guineensis Jacq.).

  • Collins AR (ed) (2007) Linkage disequilibrium and association mapping: analysis and applications, methods in molecular biology. Humana Press, p 376. https://doi.org/10.1007/978-1-59745-389-9

  • Combs E, Bernardo R (2013) Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. The Plant Genome 6(1):7. https://doi.org/10.3835/plantgenome2012.11.0030

  • Corley RHV, Tinker PB (2016) The oil palm, 5th edn. Wiley-Blackwell, Chichester, UK

    Google Scholar 

  • Costa-Neto G, Fritsche-Neto R (2021) Enviromics: bridging different sources of data, building one framework. Crop Breed Appl Biotechnol 21:1–14. https://doi.org/10.1590/1984-70332021v21Sa25

  • Costa-Neto G, Galli G, Carvalho HF, Crossa J, Fritsche-Neto R (2021) EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture. G3 11, jkab040.

  • Cros D, Sánchez L, Cochard B, Samper P, Denis M, Bouvet J-M, Fernández J (2014) Estimation of genealogical coancestry in plant species using a pedigree reconstruction algorithm and application to an oil palm breeding population. Theor Appl Genet 127:981–994. https://doi.org/10.1007/s00122-014-2273-3

    Article  PubMed  Google Scholar 

  • Cros D, Denis M, Sánchez L, Cochard B, Flori A, Durand-Gasselin T, Nouy B, Omoré A, Pomiès V, Riou V, Suryana E, Bouvet J-M (2015) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128:397–410. https://doi.org/10.1007/s00122-014-2439-z

    Article  PubMed  Google Scholar 

  • Cros D, Bocs S, Riou V, Ortega-Abboud E, Tisné S, Argout X, Pomiès V, Nodichao L, Lubis Z, Cochard B (2017) Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses. BMC Genomics 18:1–17

    Article  Google Scholar 

  • Cros D, Mbo-Nkoulou L, Bell JM, Oum J, Masson A, Soumahoro M, Tran DM, Achour Z, Le Guen V, Clement-Demange A (2019) Within-family genomic selection in rubber tree (Hevea brasiliensis) increases genetic gain for rubber production. Ind Crops Prod 138:111464

    Article  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de Campos los G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975. https://doi.org/10.1016/j.tplants.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Fritsche-Neto R, Montesinos-Lopez OA, Costa-Neto G, Dreisigacker S, Montesinos-Lopez A, Bentley AR (2021) The modern plant breeding triangle: optimizing the use of genomics, phenomics, and enviromics data. Front Plant Sci 12:651480. https://doi.org/10.3389/fpls.2021.651480

    Article  PubMed  PubMed Central  Google Scholar 

  • Daetwyler HD, Calus MPL, Pong-Wong R, Campos G, de Hickey los JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193:347–365. https://doi.org/10.1534/genetics.112.147983

    Article  PubMed  PubMed Central  Google Scholar 

  • Daval A, Pomiès V, Le Squin S, Denis M, Riou V, Breton F, Bink M, Cochard B, Jacob F, Billotte N (2021) In silico mapping in an oil palm breeding program reveals a quantitative and complex genetic resistance to Ganoderma boninense. Mol Breed 41(9):1–18. https://doi.org/10.1007/s11032-021-01246-9

    Article  CAS  Google Scholar 

  • de Campos los G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345. https://doi.org/10.1534/genetics.112.143313

    Article  Google Scholar 

  • de Freitas ECS, de Paiva HN, Neves JCL, Marcatti GE, Leite HG (2020) Modeling of eucalyptus productivity with artificial neural networks. Ind Crops Prod 146:112149

    Article  Google Scholar 

  • de Moraes BFX, dos Santos RF, de Lima BM, Aguiar AM, Missiaggia AA, da Costa Dias D, Rezende GDPS, Gonçalves FMA, Acosta JJ, Kirst M (2018) Genomic selection prediction models comparing sequence capture and SNP array genotyping methods. Mol Breeding 38:1–14

    Article  Google Scholar 

  • de Peixoto LA, Laviola BG, Alves AA, Rosado TB, Bhering LL (2017) Breeding Jatropha curcas by genomic selection: a pilot assessment of the accuracy of predictive models. PLOS One 12:e0173368. https://doi.org/10.1371/journal.pone.0173368

    Article  CAS  Google Scholar 

  • de Souza LM, dos Santos LHB, Rosa JRBF, da Silva CC, Mantello CC, Conson ARO, Scaloppi EJJ, Fialho J de F, de Moraes MLT, Gonçalves P de S, Margarido GRA, Garcia AAF, Le Guen V, de Souza AP (2018) Linkage disequilibrium and population structure in wild and cultivated populations of rubber tree (Hevea brasiliensis). Front Plant Sci 9:815. https://doi.org/10.3389/fpls.2018.00815

  • Denis M, Bouvet J-M (2013) Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes 9(1): 37–51. https://doi.org/10.1007/s11295-012-0528-1

  • Denis M, Cros D, Cochard B, Camus-Kulandaivelu L, Durand-Gasselin T, Bouvet JM (2012) Potential of genomic selection in perennial crops: preliminary results in the context of Eucalyptus and oil palm breeding : P-180 [WWW Document]. Programme and book of abstracts of the 4th International Conference of Quantitative Genetics:Understanding Variation in Complex Traits, Edinburgh, UK. 17–22. http://agritrop.cirad.fr/568293/ (Accessed 6 Jun 2019)

  • dos Santos Scholz MB, Kitzberger CSG, Pereira LFP, Davrieux F, Pot D, Charmetant P, Leroy T (2014) Application of near infrared spectroscopy for green coffee biochemical phenotyping. J Near Infrared Spectrosc 22(6):411–421. https://opg.optica.org/jnirs/abstract.cfm?URI=jnirs-22-6-411

  • Durán R, Isik F, Zapata-Valenzuela J, Balocchi C, Valenzuela S (2017) Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile. Tree Genet Genomes 13:74. https://doi.org/10.1007/s11295-017-1158-4

    Article  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  PubMed  Google Scholar 

  • El Hamidi AH, Utsunomiya YT, Xu L, Zhou Y, Neves HH, Carvalheiro R, Bickhart DM, Ma L, Garcia JF, Liu GE (2018) Genomic predictions combining SNP markers and copy number variations in Nellore cattle. BMC Genomics 19:1–8

    Google Scholar 

  • Elli E, Sentelhas P, Freitas C, Carneiro R, Alcarde Alvares C (2019) Assessing the growth gaps of Eucalyptus plantations in Brazil – magnitudes, causes and possible mitigation strategies. For Ecol Manag 451:117464. https://doi.org/10.1016/j.foreco.2019.117464

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer D, Mackay T (1996) Introduction to quantitative genetics. Essex, UK: Longman Group

  • Fanelli Carvalho H, Galli G, Ventorim Ferrão LF, Vieira Almeida Nonato J, Padilha L, Perez Maluf M, Ribeiro Resende de Jr MF, Guerreiro Filho O, Fritsche-Neto R (2020) The effect of bienniality on genomic prediction of yield in arabica coffee. Euphytica 216:1–16

    Article  Google Scholar 

  • FAO, 2015. World programme for the census of agriculture 2020: volume 1-Programme, concepts and definitions.

  • Ferrão LFV, Ferrão RG, Ferrão MAG, Fonseca A, Carbonetto P, Stephens M, Garcia AAF (2019) Accurate genomic prediction of Coffea canephora in multiple environments using whole-genome statistical models. Heredity (edinb) 122:261–275. https://doi.org/10.1038/s41437-018-0105-y

    Article  CAS  Google Scholar 

  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers Plant Sci 9:268. https://doi.org/10.3389/fpls.2018.0026

    Article  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Fugeray-Scarbel A, Bastien C, Dupont-Nivet M, Lemarié S (2021) R2D2 Consortium. Why and how to switch to genomic selection: lessons from plant and animal breeding experience. Front Genet 12:1185

    Google Scholar 

  • Gianola D, Van Kaam JB (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed  PubMed Central  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330. https://doi.org/10.1111/j.1439-0388.2007.00702.x

    Article  CAS  PubMed  Google Scholar 

  • Gois IB, Borém A, Cristofani-Yaly M, Resende MDV, Azevedo C, Bastianel M, Novelli V, Machado M (2016) Genome wide selection in citrus breeding. Genet Mol Res 15(4). https://doi.org/10.4238/gmr15048863

  • Gramazio P, Prohens J, Toppino L, Plazas M (2021) Introgression breeding in cultivated plants. Frontiers Plant Sci 12:764533. https://doi.org/10.3389/fpls.2021.764533

    Article  Google Scholar 

  • Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA (2018) Quantitative genetics and genomics converge to accelerate forest tree breeding. Front Plant Sci 9:1693. https://doi.org/10.3389/fpls.2018.01693

  • Grattapaglia D, Resende MD (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255

    Article  Google Scholar 

  • Grattapaglia D (2014) Breeding forest trees by genomic selection: current progress and the way forward. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources, vol 1. Managing, Sequencing and mining genetic resources. Springer Netherlands, Dordrecht, pp 651–682. https://doi.org/10.1007/978-94-007-7572-5_26

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485. https://doi.org/10.1007/s11103-005-0257-z

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217. https://doi.org/10.1002/9780470535486.ch4

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443. https://doi.org/10.3168/jds.2008-1646

    Article  CAS  PubMed  Google Scholar 

  • Hazel LN, Lush JL (1942) The efficiency of three methods of selection. J Hered 33:393–399. https://doi.org/10.1093/oxfordjournals.jhered.a105102

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12. https://doi.org/10.2135/cropsci2008.08.0512

    Article  CAS  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447. https://doi.org/10.2307/2529430

    Article  CAS  PubMed  Google Scholar 

  • Heslot N, Jannink J-L, Sorrells M (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55:1–12. https://doi.org/10.2135/cropsci2014.03.0249

    Article  Google Scholar 

  • Hess M, Druet T, Hess A, Garrick D (2017) Fixed-length haplotypes can improve genomic prediction accuracy in an admixed dairy cattle population. Genet Sel Evol 49:54. https://doi.org/10.1186/s12711-017-0329-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754. https://doi.org/10.1038/s41587-019-0152-9

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Chitnis N, Monos D, Dinh A (2021) Next-generation sequencing technologies: an overview. Hum Immunol 82:801–811

    Article  CAS  PubMed  Google Scholar 

  • Huth NI, Banabas M, Nelson PN, Webb M (2014) Development of an oil palm cropping systems model: lessons learned and future directions. Environ Model Softw 62:411–419

    Article  Google Scholar 

  • Imai A, Kuniga T, Yoshioka T, Nonaka K, Mitani N, Fukamachi H, Hiehata N, Yamamoto M, Hayashi T (2019) Single-step genomic prediction of fruit-quality traits using phenotypic records of non-genotyped relatives in citrus. PLoS One 14:e0221880. https://doi.org/10.1371/journal.pone.0221880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158. https://doi.org/10.1007/s00122-014-2418-4

    Article  PubMed  Google Scholar 

  • Isidro y Sánchez J, Akdemir D, (2021) Training set optimization for sparse phenotyping in genomic selection: a conceptual overview. Front Plant Sci 12:715910. https://doi.org/10.3389/fpls.2021.715910

    Article  Google Scholar 

  • Isik F (2014) Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forest 45:379–401. https://doi.org/10.1007/s11056-014-9422-z

    Article  Google Scholar 

  • Ithnin M, Xu Y, Marjuni M, Serdari NM, Amiruddin MD, Low E-TL, Tan Y-C, Yap S-J, Ooi LCL, Nookiah R (2017) Multiple locus genome-wide association studies for important economic traits of oil palm. Tree Genet Genomes 13:1–14

    Article  Google Scholar 

  • Jamnadass R, McMullin S, Iiyama M, Dawson IK, Powell B, Termote C, Ickowitz A, Kehlenbeck K, Vinceti B, van Vliet N, Keding G, Stadlmayr B, Van Damme P, Carsan S, Sunderland T, Njenga M, Gyau A, Cerutti P, Schure J, Kouame C, Obiri BD, Ofori D, Agarwal B, Neufeldt H, Degrande A, Serban A (2016) 2. Understanding the Roles of Forests and Tree-based Systems in Food Provision. In: Mansourian S, Vira B, Wildburger C (eds) Forests and food : addressing hunger and nutrition across sustainable landscapes, OBP Collection. Open Book Publishers, Cambridge, pp 29–72

    Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177. https://doi.org/10.1093/bfgp/elq001

    Article  CAS  PubMed  Google Scholar 

  • Juliana P, Montesinos-López OA, Crossa J, Mondal S, González Pérez L, Poland J, Huerta-Espino J, Crespo-Herrera L, Govindan V, Dreisigacker S (2019) Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theor Appl Genet 132:177–194

    Article  CAS  PubMed  Google Scholar 

  • Kitony JK, Sunohara H, Tasaki M, Mori J-I, Shimazu A, Reyes VP, Yasui H, Yamagata Y, Yoshimura A, Yamasaki M (2021) Development of an Aus-derived nested association mapping (Aus-NAM) population in rice. Plants 10:1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E (2019) Soil and the intensification of agriculture for global food security. Environ Int 132:105078. https://doi.org/10.1016/j.envint.2019.105078

    Article  PubMed  Google Scholar 

  • Kumar S, Hilario E, Deng CH, Molloy C (2020) Turbocharging introgression breeding of perennial fruit crops: a case study on apple. Hortic Res 7:1–7

    Article  CAS  Google Scholar 

  • Kwong QB, Teh CK, Ong AL, Heng HY, Lee HL, Mohamed M, Low JZ-B, Apparow S, Chew FT, Mayes S, Kulaveerasingam H, Tammi M, Appleton DR (2016) Development and validation of a high-density SNP genotyping array for African oil palm. Mol Plant 9:1132–1141. https://doi.org/10.1016/j.molp.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  • Kwong QB, Ong AL, Teh CK, Chew FT, Tammi M, Mayes S, Kulaveerasingam H, Yeoh SH, Harikrishna JA, Appleton DR (2017) Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq). Scientific Reports 7:2872. https://doi.org/10.1038/s41598-017-02602-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong QB, Teh CK, Ong AL, Chew FT, Mayes S, Kulaveerasingam H, Tammi M, Yeoh SH, Appleton DR, Harikrishna JA (2017) Evaluation of methods and marker systems in genomic selection of oil palm (Elaeis guineensis Jacq). BMC Genetics 18:107. https://doi.org/10.1186/s12863-017-0576-5

    Article  PubMed  PubMed Central  Google Scholar 

  • LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37:4181–4193. https://doi.org/10.1093/nar/gkp552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanaud C, Motamayor JC, Risterucci A-M (2001) Implications of new insight into the genetic structure of Theobroma cacao L. for breeding strategies. In: Bekele F, End M, Eskes AB (eds) Proceeding of the international workshop on new technologies and cacao breeding, pp 89–107. Kota Kinabalu, Sabah 2001. https://agritrop.cirad.fr/476853

  • Lebedev VG, Lebedeva TN, Chernodubov AI, Shestibratov KA (2020) Genomic selection for forest tree improvement: methods, achievements and perspectives. Forests 11:1190. https://doi.org/10.3390/f11111190

    Article  Google Scholar 

  • Li Y, Suontama M, Burdon RD, Dungey HS (2017) Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genet Genomes 13:1–18

    Article  Google Scholar 

  • Lin Z, Hayes B, Daetwyler H (2014) Genomic selection in crops, trees and forages: a review. Crop Pasture Sci 65:1177–1191

    Article  Google Scholar 

  • Liu X, Wang H, Wang H, Guo Z, Xu X, Liu J, Wang S, Li W-X, Zou C, Prasanna BM, Olsen MS, Huang C, Xu Y (2018) Factors affecting genomic selection revealed by empirical evidence in maize. Crop J 6:341–352. https://doi.org/10.1016/j.cj.2018.03.005

    Article  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding. Knowl Prospects ADVANCES IN AGRONOMY 110:77–123. https://doi.org/10.1016/B978-0-12-385531-2.00002-5

    Article  Google Scholar 

  • Lourenco D, Legarra A, Tsuruta S, Masuda Y, Aguilar I, Misztal I (2020) Single-step genomic evaluations from theory to practice: using SNP chips and sequence data in BLUPF90. Genes 11:790

    Article  CAS  PubMed Central  Google Scholar 

  • Lyra DH, Galli G, Alves FC, Granato ÍSC, Vidotti MS, e Sousa MB, Morosini JS, Crossa J, Fritsche-Neto R (2019) Modeling copy number variation in the genomic prediction of maize hybrids. Theor Appl Genet 132:273–288

    Article  CAS  PubMed  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • Maldonado C, Mora F, Contreras-Soto R, Ahmar S, Chen J-T, do Amaral Júnior AT, Scapim CA (2020) Genome-wide prediction of complex traits in two outcrossing plant species through deep learning and Bayesian regularized neural network. Frontiers Plant Sci 11:1734

    Article  Google Scholar 

  • Malosetti M, Bustos-Korts D, Boer MP, van Eeuwijk FA (2016) Predicting responses in multiple environments: issues in relation to genotype× environment interactions. Crop Sci 56:2210–2222

    Article  Google Scholar 

  • Marchal A, Legarra A, Tisne S, Carasco-Lacombe C, Manez A, Suryana E, Omoré A, Nouy B, Durand-Gasselin T, Sánchez L (2016) Multivariate genomic model improves analysis of oil palm (Elaeis guineensis Jacq) progeny tests. Molecular Breeding 36:2

    Article  Google Scholar 

  • Marchal A, Schlichting CD, Gobin R, Balandier P, Millier F, Muñoz F, Pâques LE, Sánchez L (2019) Deciphering hybrid larch reaction norms using random regression. G3: Genes. Genomes, Genetics 9:21–32

    Google Scholar 

  • McElroy MS, Navarro AJR, Mustiga G, Stack C, Gezan S, Peña G, Sarabia W, Saquicela D, Sotomayor I, Douglas GM, Migicovsky Z, Amores F, Tarqui O, Myles S, Motamayor JC (2018) Prediction of cacao (Theobroma cacao) resistance to Moniliophthora spp. diseases via genome-wide association analysis and genomic selection. Front Plant Sci 9:343. https://doi.org/10.3389/fpls.2018.00343

  • Merrick LF, Herr AW, Sandhu KS, Lozada DN, Carter AH (2022) Optimizing plant breeding programs for genomic selection. Agronomy 12:714

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genet 157:1819–1829

    Article  CAS  Google Scholar 

  • Minamikawa MF, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi A, Goto S, Yoshioka T, Imai A, Hamada H, Hayashi T (2017) Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  • Momen M, Mehrgardi AA, Sheikhi A, Kranis A, Tusell L, Morota G, Rosa GJM, Gianola D (2018) Predictive ability of genome-assisted statistical models under various forms of gene action. Sci Rep 8:12309. https://doi.org/10.1038/s41598-018-30089-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, Barrón-López JA, Martini JW, Fajardo-Flores SB, Gaytan-Lugo LS, Santana-Mancilla PC, Crossa J (2021) A review of deep learning applications for genomic selection. BMC Genomics 22:1–23

    Article  Google Scholar 

  • Morota G, Gianola D (2014) Kernel-based whole-genome prediction of complex traits: a review. Front Genet 5:363

    Article  PubMed  PubMed Central  Google Scholar 

  • Mphahlele MM, Isik F, Hodge GR, Myburg AA (2021) Genomic breeding for diameter growth and tolerance to leptocybe gall wasp and botryosphaeria/teratosphaeria fungal disease complex in Eucalyptus grandis. Front Plant Sci 12:228. https://doi.org/10.3389/fpls.2021.638969

  • Mrode R, Ojango JMK, Okeyo AM, Mwacharo JM (2019) Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: current status and future prospects. Front Genet 9:694. https://doi.org/10.3389/fgene.2018.00694

  • Mrode RA (2014) Linear models for the prediction of animal breeding values, 2nd edn. CABI International, Wallingford, Oxon, pp 235–245

  • Müller BSF, Neves LG, de Almeida Filho JE, Resende MFR, Muñoz PR, dos Santos PET, Filho EP, Kirst M, Grattapaglia D (2017) Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genomics 18:524. https://doi.org/10.1186/s12864-017-3920-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Munyengwa N, Le Guen V, Bille HN, Souza LM, Clément-Demange A, Mournet P, Masson A, Soumahoro M, Kouassi D, Cros D (2021) Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model species: rubber tree (Hevea brasiliensis) as a case study. Genomics 113:655–668. https://doi.org/10.1016/j.ygeno.2021.01.012

    Article  CAS  PubMed  Google Scholar 

  • Ni G, Cavero D, Fangmann A, Erbe M, Simianer H (2017) Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture. Genet Sel Evol 49(1):1–14. https://doi.org/10.1186/s12711-016-0277-y

  • Nielsen NH, Jahoor A, Jensen JD, Orabi J, Cericola F, Edriss V, Jensen J (2016) Genomic prediction of seed quality traits using advanced barley breeding lines. PLoS One 11(10). https://doi.org/10.1371/journal.pone.0164494

  • Nsibi M, Gouble B, Bureau S, Flutre T, Sauvage C, Audergon J-M, Regnard J-L (2020) Adoption and optimization of genomic selection to sustain breeding for apricot fruit quality. G3: Genes. Genomes Genet 10:4513–4529

    Google Scholar 

  • Nyine M, Uwimana B, Blavet N, Hřibová E, Vanrespaille H, Batte M, Akech V, Brown A, Lorenzen J, Swennen R, Doležel J (2018) Genomic prediction in a multiploid crop: genotype by environment interaction and allele dosage effects on predictive ability in banana. Plant Genome 11:170090. https://doi.org/10.3835/plantgenome2017.10.0090

    Article  CAS  Google Scholar 

  • Oliveira H, Brito L, Lourenco D, Silva F, Jamrozik J, Schaeffer L, Schenkel F (2019) Invited review: advances and applications of random regression models: from quantitative genetics to genomics. J Dairy Sci 102:7664–7683

    Article  CAS  PubMed  Google Scholar 

  • Paludeto JGZ, Grattapaglia D, Estopa RA, Tambarussi EV (2021) Genomic relationship–based genetic parameters and prospects of genomic selection for growth and wood quality traits in Eucalyptus benthamii. Tree Genet Genomes 17:1–20

    Article  Google Scholar 

  • Peixoto MA, Alves RS, Coelho IF, Evangelista JSPC, de Resende MDV, de Rocha JRDOASC, e Silva FF, Laviola BG, Bhering LL (2020) Random regression for modeling yield genetic trajectories in Jatropha curcas breeding. Plos one 15:e0244021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persa R, de Oliveira Ribeiro PC, Jarquin D (2021) The use of high-throughput phenotyping in genomic selection context. Crop Breed App Biotechnol 21:1–11. https://doi.org/10.1590/1984-70332021v21Sa19

  • Pirker J, Mosnier A, Kraxner F, Havlík P, Obersteiner M (2016) What are the limits to oil palm expansion? Glob Environ Chang 40:73–81. https://doi.org/10.1016/j.gloenvcha.2016.06.007

    Article  Google Scholar 

  • Pootakham W, Jomchai N, Ruang-areerate P, Shearman JR, Sonthirod C, Sangsrakru D, Tragoonrung S, Tangphatsornruang S (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105:288–295. https://doi.org/10.1016/j.ygeno.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshan P (2011) Biology of Hevea rubber. Springer

    Book  Google Scholar 

  • Pszczola M, Strabel T, Mulder H, Calus M (2012) Reliability of direct genomic values for animals with different relationships within and to the reference population. J Dairy Sci 95:389–400

    Article  CAS  PubMed  Google Scholar 

  • Rambolarimanana T, Ramamonjisoa L, Verhaegen D, Tsy J-MLP, Jacquin L, Cao-Hamadou T-V, Makouanzi G, Bouvet J-M (2018) Performance of multi-trait genomic selection for Eucalyptus robusta breeding program. Tree Genet Genomes 14:1–13

    Article  Google Scholar 

  • Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D (2012) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128. https://doi.org/10.1111/j.1469-8137.2011.04038.x

    Article  PubMed  Google Scholar 

  • Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D (2017) Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity (edinb) 119:245–255. https://doi.org/10.1038/hdy.2017.37

    Article  CAS  Google Scholar 

  • Resende RT, Piepho H-P, Rosa GJ, Silva-Junior OB, de Resende MDV, Grattapaglia D (2021) Enviromics in breeding: applications and perspectives on envirotypic-assisted selection. Theor Appl Genet 134:95–112

    Article  PubMed  Google Scholar 

  • Reyes VP, Angeles-Shim RB, Mendioro MS, Manuel M, Carmina C, Lapis RS, Shim J, Sunohara H, Nishiuchi S, Kikuta M (2021) Marker-assisted introgression and stacking of major QTLs controlling grain number (Gn1a) and number of primary branching (WFP) to NERICA cultivars. Plants 10:844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rincent R, Kuhn E, Monod H, Oury F-X, Rousset M, Allard V, Le Gouis J (2017) Optimization of multi-environment trials for genomic selection based on crop models. Theor Appl Genet 130:1735–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rincent R, Charpentier J-P, Faivre-Rampant P, Paux E, Le Gouis J, Bastien C, Segura V (2018) Phenomic selection is a low-cost and high-throughput method based on indirect predictions: proof of concept on wheat and poplar. G3: Genes. Genomes Genet 8:3961–3972

    CAS  Google Scholar 

  • Rival A, Levang P (2014) Palms of controversies: oil palm and development challenges. Bogor: Center for International Forestry Research. https://doi.org/10.17528/cifor/004860

  • Robertsen CD, Hjortshøj RL, Janss LL (2019) Genomic Selection in Cereal Breeding. Agronomy 9:95. https://doi.org/10.3390/agronomy9020095

    Article  Google Scholar 

  • Romero Navarro JA, Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A, Haiminen N, Mustiga G, Livingstone Iii D, van Bakel H, Kuhn DN, Parida L, Kasarskis A, Motamayor JC (2017) Application of genome wide association and genomic prediction for improvement of cacao productivity and resistance to black and frosty pod diseases. Front Plant Sci 8:1905. https://doi.org/10.3389/fpls.2017.01905

    Article  PubMed  PubMed Central  Google Scholar 

  • Röös E, Bajželj B, Smith P, Patel M, Little D, Garnett T (2017) Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob Environ Chang 47:1–12. https://doi.org/10.1016/j.gloenvcha.2017.09.001

    Article  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiessl S-V, Katche E, Ihien E, Chawla HS, Mason AS (2019) The role of genomic structural variation in the genetic improvement of polyploid crops. The Crop Journal 7:127–140

    Article  Google Scholar 

  • Scossa F, Brotman Y, de e Lima FA, Willmitzer L, Nikoloski Z, Tohge T, Fernie AR (2016) Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Sci 242:47–64

    Article  CAS  PubMed  Google Scholar 

  • Scossa F, Alseekh S, Fernie AR (2021) Integrating multi-omics data for crop improvement. J Plant Physiol 257:153352

    Article  CAS  PubMed  Google Scholar 

  • Silva FA, Viana AP, Corrêa CCG, Santos EA, Oliveira JAVS, Andrade JDG, Ribeiro RM, Glória LS (2021) Bayesian ridge regression shows the best fit for Ssr markers in Psidium guajava among Bayesian models. Sci Rep 11(1): 1–11. https://doi.org/10.1038/s41598-021-93120-z

  • Silva-Junior OB, Faria DA, Grattapaglia D (2015) A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New Phytol 206:1527–1540. https://doi.org/10.1111/nph.13322

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (2008) Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneller C, Ignacio C, Ward B, Rutkoski J, Mohammadi M (2021) Using Genomic selection to leverage resources among breeding programs: consortium-based breeding. Agronomy 11:1555

    Article  Google Scholar 

  • Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE (2008) Genomic selection using different marker types and densities. J Anim Sci 86:2447–2454. https://doi.org/10.2527/jas.2007-0010

    Article  CAS  PubMed  Google Scholar 

  • Sørensen P, Edwards SM, Madsen P, Jensen P, Sørensen IF, de los Campos G, Sorensen D (2013) Genomic feature models: conference on genomics of common diseases. Book of Abstracts. Conference on Genomics of Common Diseases, Oxford, United Kingdom, 07/09/2013, p 68

  • Sousa TV, Caixeta ET, Alkimim ER, Oliveira ACB, Pereira AA, Sakiyama NS, Zambolim L, Resende MDV (2019) Early selection enabled by the implementation of genomic selection in Coffea arabica breeding. Front Plant Sci 9:1934. https://doi.org/10.3389/fpls.2018.01934

  • de Sousa IC, Nascimento M, Silva GN, Nascimento ACC, Cruz CD, de Almeida DP, Pestana KN, Azevedo CF, Zambolim L, Caixeta ET (2020) Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms. Sci Agrár 78(4):1–8. https://doi.org/10.1590/1678-992X-2020-0021

    Article  Google Scholar 

  • Souza LM, Francisco FR, Gonçalves PS, Scaloppi Junior EJ, Le Guen V, Fritsche-Neto R, Souza AP (2019) Genomic selection in rubber tree breeding: a comparison of models and methods for managing G× E interactions. Front Plant Sci 10:1353. https://doi.org/10.3389/fpls.2019.01353

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87:245

    Article  Google Scholar 

  • Sun D, Cen H, Weng H, Wan L, Abdalla A, El-Manawy AI, Zhu Y, Zhao N, Fu H, Tang J (2019) Using hyperspectral analysis as a potential high throughput phenotyping tool in GWAS for protein content of rice quality. Plant Methods 15:1–16

    Article  CAS  Google Scholar 

  • Tan B, Grattapaglia D, Martins GS, Ferreira KZ, Sundberg B, Ingvarsson PK (2017) Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol 17:110. https://doi.org/10.1186/s12870-017-1059-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan B, Grattapaglia D, Wu HX, Ingvarsson PK (2018) Genomic relationships reveal significant dominance effects for growth in hybrid Eucalyptus. Plant Sci 267:84–93. https://doi.org/10.1016/j.plantsci.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Ingvarsson PK (2019) Integrating genome-wide association mapping of additive and dominance genetic effects to improve genomic prediction accuracy in Eucalyptus. bioRxiv 15(2). https://doi.org/10.1002/tpg2.20208

  • Thistlethwaite FR, El-Dien OG, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, Ingvarsson PK, El-Kassaby YA (2020) Linkage disequilibrium vs pedigree: genomic selection prediction accuracy in conifer species. PLOS ONE 15:e0232201. https://doi.org/10.1371/journal.pone.0232201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Z, Wang J, Li J, Han B (2021) Designing future crops: challenges and strategies for sustainable agriculture. Plant J 105:1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Nikoloski Z (2021) Machine learning approaches for crop improvement: leveraging phenotypic and genotypic big data. J Plant Physiol 257:153354

    Article  CAS  PubMed  Google Scholar 

  • Tran HT, Lee LS, Furtado A, Smyth H, Henry RJ (2016) Advances in genomics for the improvement of quality in coffee. J Sci Food Agric 96:3300–3312

    Article  CAS  PubMed  Google Scholar 

  • Tyczewska A, Woźniak E, Gracz J, Kuczyński J, Twardowski T (2018) Towards food security: current state and future prospects of agrobiotechnology. Trends Biotechnol 36:1219–1229. https://doi.org/10.1016/j.tibtech.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  • Uitdewilligen JG, Wolters A-MA, D’hoop BB, Borm TJ, Visser RG, Van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PloS one 8:e62355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Eeuwijk FA, Bustos-Korts D, Millet EJ, Boer MP, Kruijer W, Thompson A, Malosetti M, Iwata H, Quiroz R, Kuppe C (2019) Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci 282:23–39

    Article  PubMed  Google Scholar 

  • VanRaden PM (2007) Genomic measures of relationship and inbreeding. Interbull Bulletin 37:33–33

    Google Scholar 

  • Varshney RK, Roorkiwal M, Sorrells ME (2017) Genomic selection for crop improvement: an introduction. In: Varshney RK, Roorkiwal M, Sorrells ME (eds) Genomic selection for crop improvement: new molecular breeding strategies for crop improvement. Springer International Publishing, pp 1–6. https://doi.org/10.1007/978-3-319-63170-7_1

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686. https://doi.org/10.1007/s00122-018-3270-8

    Article  PubMed  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082. https://doi.org/10.1126/science.280.5366.1077

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Jassogne L, van Asten PJA, Mukasa D, Wanyama I, Kagezi G, Giller KE (2015) Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. Eur J Agron 63:1–11. https://doi.org/10.1016/j.eja.2014.11.003

    Article  CAS  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6(4):330–340. https://doi.org/10.1016/j.cj.2018.03.001

  • Wartha CA, Lorenz AJ (2021) Implementation of genomic selection in public-sector plant breeding programs: current status and opportunities. Crop Breeding Appl Biotechnol 21:1–19. https://doi.org/10.1590/1984-70332021v21Sa28

    Article  Google Scholar 

  • Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235–254. https://doi.org/10.2307/2529947

    Article  CAS  PubMed  Google Scholar 

  • Wientjes YCJ, Veerkamp RF, Calus MPL (2013) The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics 193:621–631. https://doi.org/10.1534/genetics.112.146290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS (2017) Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 5:309–327. https://doi.org/10.1146/annurev-animal-021815-111422

    Article  PubMed  Google Scholar 

  • Woittiez LS, van Wijk MT, Slingerland M, van Noordwijk M, Giller KE (2017) Yield gaps in oil palm: a quantitative review of contributing factors. Eur J Agron 83:57–77. https://doi.org/10.1016/j.eja.2016.11.002

    Article  Google Scholar 

  • Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824. https://doi.org/10.1007/s00122-008-0715-5

    Article  CAS  PubMed  Google Scholar 

  • World Coffee Research (2022) Innovea Global Coffee Breeding Network. https://worldcoffeeresearch.org/programs/global-breeding-network

  • Wu D, Guo Z, Ye J, Feng H, Liu J, Chen G, Zheng J, Yan D, Yang X, Xiong X (2019) Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. J Exp Bot 70:545–561

    Article  CAS  PubMed  Google Scholar 

  • Würschum T, Longin CFH, Hahn V, Tucker MR, Leiser WL (2017) Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant J 89:764–773

    Article  PubMed  Google Scholar 

  • Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129:653–673. https://doi.org/10.1007/s00122-016-2691-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Communications 1:100005. https://doi.org/10.1016/j.xplc.2019.100005

    Article  PubMed  Google Scholar 

  • Yeap W-C, Norkhairunnisa Che Mohd Khan, Norfadzilah Jamalludin, Muad MR, Appleton DR, Harikrishna Kulaveerasingam (2021) An efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 mutagenesis system for oil palm (Elaeis guineensis). Frontiers in Plant Science 12

  • Yuan Y, Bayer PE, Batley J, Edwards D (2021) Current status of structural variation studies in plants. Plant Biotechnol J 19:2153–2163

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Motilal L (2016) Origin, dispersal, and current global distribution of cacao genetic diversity. In: Cacao Diseases. Springer, pp 3–31. https://doi.org/10.1007/978-3-319-24789-2_1

  • Zhou L, Holliday JA (2012) Targeted enrichment of the black cottonwood (Populus trichocarpa) gene space using sequence capture. BMC Genomics 13:1–12

    Article  Google Scholar 

  • Zuidema PA, Leffelaar PA, Gerritsma W, Mommer L, Anten NP (2005) A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. Agric Syst 84:195–225

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the GENES program of the Intra-Africa Academic Mobility Scheme of the European Union for financial support (EU-GENES:2017-2552/001-001). The authors also thank Marie Denis, Gilles Trouche, André Clément-Demange, Angélique D’Hont, Dominique Dessauw, and Xavier Argout for discussions that improved the manuscript.

Funding

This study was funded by the GENES Intra-Africa Academic Mobility Scheme of the European Union (EU-GENES:2017–2552/001–001) program, by CIRAD, and by a grant from PalmElit SAS.

Author information

Authors and Affiliations

Authors

Contributions

EGS and DC carried out the literature review and wrote the manuscript, with help from WGA, NHB, NM, and JMB. All authors read and approved the final manuscript.

Corresponding author

Correspondence to David Cros.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

We declare that all authors do not have any kind of financial or non-financial interests that are directly or indirectly related to this review article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyum, E.G., Bille, N.H., Abtew, W.G. et al. Genomic selection in tropical perennial crops and plantation trees: a review. Mol Breeding 42, 58 (2022). https://doi.org/10.1007/s11032-022-01326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-022-01326-4

Keywords

Navigation