Skip to main content
Log in

Identification of a major QTL and genome-wide epistatic interactions for single vs. paired spikelets in a maize-teosinte F2 population

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Maize ear carries paired spikelets, whereas the ear of its wild ancestor, teosinte, bears single spikelets. However, little is known about the genetic basis of the processes of transformation of single spikelets in teosinte ear to paired spikelets in maize ear. In this study, a two-ranked, paired-spikelets primitive maize and a two-ranked, single-spikelet teosinte were utilized to develop an F2 population, and quantitative trait locus (loci) (QTL) mapping for single vs. paired spikelets (PEDS) was performed. One major QTL (qPEDS3.1) for PEDS located on chromosome 3S was identified in the 162 F2 plants using the inclusive composite interval mapping of additive (ICIM-ADD) module, explaining 23.79% of the phenotypic variance. Out of the 409 F2 plants, 43 plants with PEDS = 0% and 43 plants with PEDS > 20% were selected for selective genotyping, and the QTL (qPEDS3.1) was detected again. Moreover, the QTL (qPEDS3.1) was validated in three environments, which explained 31.05%, 38.94%, and 23.16% of the phenotypic variance, respectively. In addition, 50 epistatic QTLs were detected in the 162 F2 plants using the two-locus epistatic QTL (ICIM-EPI) module; they were distributed on all 10 chromosomes and explained 94.40% of the total phenotypic variance. The results contribute to a better understanding of the genetic basis of domestication of paired spikelets and provide a genetic resource for future map-based cloning; in addition, the systematic dissection of epistatic interactions underlies a theoretical framework for overcoming epistatic effects on QTL fine mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data are provided in the Supplementary information and the materials available on request from the authors.

Abbreviations

DISA:

Tendency of ear to shatter

FM:

Floral meristems

GLUM:

Hardness and angle of outer glume

InDel:

Insertion-deletion

LIBN:

Number of branches in primary lateral inflorescence

NILs:

Near-isogenic lines

RANK:

Number of rows of cupules

SDRs:

Segregation distortion regions

SM:

Spikelet meristems

SPM:

Spikelet pair meristems

OPA:

Oligonucleotides pool assay

PEDS:

Percentage of cupules lacking the pedicellate spikelet

QTL:

Quantitative trait locus (loci

References

  • Azevedo RB, Lohaus R, Srinivasan S, Dang KK, Burch CL (2006) Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440(7080):87–90

    Article  CAS  PubMed  Google Scholar 

  • Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172(1):519–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomblies K, Wang R-L, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130(11):2385–2395

    Article  CAS  PubMed  Google Scholar 

  • Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA (2012) Epistasis as the primary factor in molecular evolution. Nature 490(7421):535–538

    Article  CAS  PubMed  Google Scholar 

  • Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize–teosinte backcross resource. Genetics 177(3):1915–1928

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai L, Li K, Yang X, Li J (2014) Identification of large-effect QTL for kernel row number has potential for maize yield improvement. Mol Breed 34(3):1087–1096

    Article  CAS  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5(8):618

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-J, Cong Y, Tang D-G, Zhang L, Zhang L, Qu J-T, Jian L (2017) Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. J Integr Agr 16(7):1432–1442

    Article  Google Scholar 

  • Collins G, Kempton J (1920) A teosinte-maize hybrid. J Agric Res 19:1–37

    Google Scholar 

  • De Visser JAG, Cooper TF, Elena SF (2011) The causes of epistasis. Proc R Soc B Biol Sci 278(1725):3617–3624

    Article  Google Scholar 

  • Doebley J (1992) Mapping the genes that made maize. Trends Genet 8(9):302–307

    Article  CAS  PubMed  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129(1):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134(2):559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995a) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141(1):333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Kent B (1995b) Suppressor of sessile spikelets1 (Sosl): a dominant mutant affecting inflorescence development in maize. Am J Bot 82(5):571–577

    Article  Google Scholar 

  • Doebley J, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci USA 87(24):9888–9892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262(5131):233–235

    Article  CAS  PubMed  Google Scholar 

  • Dufour P, Johnsson C, Antoine-Michard S, Cheng R, Murigneux A, Beckert M (2001) Segregation distortion at marker loci: variation during microspore embryogenesis in maize. Theor Appl Genet 102(6–7):993–1001

    Article  CAS  Google Scholar 

  • Edwards M, Stuber C, Wendel J (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116(1):113–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Garcia EW, Lebruska LL, Laurent M, Shen R, Barker D (2006) [3] Illumina universal bead arrays. Method Enzymol 410:57–73

    Article  CAS  Google Scholar 

  • Hou X, Liu Y, Xiao Q, Wei B, Zhang X, Gu Y, Wang Y, Chen J, Hu Y, Liu H (2015) Genetic analysis for canopy architecture in an F2:3 population derived from two-type foundation parents across multi-environments. Euphytica 205(2):421–440

    Article  Google Scholar 

  • Hurst LD (2000) Epistasis and the evolutionary process. Heredity 85(6):625–626

    Article  Google Scholar 

  • Jiang Y, Schmidt RH, Zhao Y, Reif JC (2017) A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet 49(12):1741

    Article  CAS  PubMed  Google Scholar 

  • King EG, Long AD (2017) The Beavis effect in next-generation mapping panels in Drosophila melanogaster. G3: Genes Genom Genet 7(6):1643–1652

    Article  CAS  Google Scholar 

  • Kim B, Jang SM, Chu S-H, Bordiya Y, Akter MB, Lee J, Chin JH, Koh H-J (2014) Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 7(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336(6198):435–440

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (2016) The estimation of map distances from recombination values. In: DD Kosambi. Springer, pp 125–130

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • Langham DG (1940) The inheritance of intergeneric differences in Zea-Euchlaena hybrids. Genetics 25(1):88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauter N, Doebley J (2002) Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics 160(1):333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-I, Ho H-A, Kao C-H (2014) A new simple method for improving QTL mapping under selective genotyping. Genetics 198(4):1685–1698

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehner B (2011) Molecular mechanisms of epistasis within and between genes. Trends Genet 27(8):323–331

    Article  CAS  PubMed  Google Scholar 

  • Li C, Bai G, Carver BF, Chao S, Wang Z (2015) Single nucleotide polymorphism markers linked to QTL for wheat yield traits. Euphytica 206(1):89–101

    Article  Google Scholar 

  • Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44(6):720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Qu J, Yang C, Tang D, Li J, Lan H, Rong T (2015) Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genomics 16(1):1–9

    Article  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105(4):622–628

    Article  CAS  PubMed  Google Scholar 

  • Lukens LN, Doebley J (1999) Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet Res 74(3):291–302

    Article  CAS  Google Scholar 

  • Mackay TF (2014) Epistasis and quantitative traits: using model organisms to study gene–gene interactions. Nat Rev Genet 15(1):22

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf PC (1947) The origin and evolution of maize. In: Advances in genetics, vol 1. Elsevier, pp 161–207

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize× teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58(3):217–223

    Article  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) AFLP-SSR maps of maize× teosinte and maize× maize: comparison of map length and segregation distortion. Plant Breed 124(5):432–439

    Article  CAS  Google Scholar 

  • McCouch S (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • Nijhout HF (2002) The nature of robustness in development. Wiley Subscription Services Inc, A Wiley Company 24(6):553–563

    CAS  Google Scholar 

  • Rice SH (1998) The evolution of canalization and the breaking of von Baer’s laws: modeling the evolution of development with epistasis. Evolution 52(3):647–656

    Article  PubMed  Google Scholar 

  • Rogers JS (1950) The inheritance of inflorescence characters in maize-teosinte hybrids. Genetics 35(5):541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncallo PF, Cervigni GL, Jensen C, Miranda R, Carrera AD, Helguera M, Echenique V (2012) QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica 185(1):77–92

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanguinetti CJ, Neto ED, Simpson A (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17(5):914–921

    CAS  PubMed  Google Scholar 

  • Shang L, Liang Q, Wang Y, Zhao Y, Wang K, Hua J (2016) Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theor Appl Genet 129(7):1429–1446

    Article  PubMed  Google Scholar 

  • Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48(5):463–481

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Campbell HL, Singh D, Bhavani S, Fetch T, Clarke F (2013) Identification and mapping in spring wheat of genetic factors controlling stem rust resistance and the study of their epistatic interactions across multiple environments. Theor Appl Genet 126(8):1951–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, Goren A, Jiang K, Ramos A, Esther V (2017) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell:S0092867417304865

  • Sundaram, Prity, Samineni, Srinivasan, Sajja, Sobhan B, Singh SP (2018) Genetic studies for seed size and grain yield traits in kabuli chickpea. Euphytica 214(4):63

    Article  Google Scholar 

  • Szabó V, Burr B (1996) Simple inheritance of key traits distinguishing maize and teosinte. Mol Gen Genet 252(1–2):33–41

    Article  PubMed  Google Scholar 

  • Tian M, Tan G, Liu Y, Rong T, Huang Y (2009) Origin and evolution of Chinese waxy maize: evidence from the Globulin-1 gene. Genet Resour Crop Ev 56(2):247–255

    Article  CAS  Google Scholar 

  • Upadyayula N, Silva H, Bohn MO, Rocheford TR (2006) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet 112(4):592–606

    Article  CAS  PubMed  Google Scholar 

  • Vazquez M, Zemetra R, Peterson CJ, Chen XM, Mundt CC (2015) Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions. Theor Appl Genet 128(7):1307–1318

    Article  PubMed  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7(2):118–126

    Article  Google Scholar 

  • Wagner GP, Booth G, Bagheri-Chaichian H (1997) A population genetic theory of canalization. Evolution 51(2):329–347

    Article  PubMed  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436(7051):714–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Lu Y, Zheng M, Rong T, Tang Q (2011) RAPD and internal transcribed spacer sequence analyses reveal Zea nicaraguensis as a section Luxuriantes species close to Zea luxurians. PLoS One 6(4):e16728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, He QQ, Xu ZK, Song RT (2012) High segregation distortion in maize B73 × teosinte crosses. Genet Mol Res 1:693–706

    Article  Google Scholar 

  • Wendel JF, Edwards M, Stuber CW (1987) Evidence for multilocus genetic control of preferential fertilisation in maize. Heredity 58(Pt 2 (2)):297–301

    Article  PubMed  Google Scholar 

  • Yan JB, Tang H, Huang YQ, Zheng YL, Li JS (2003) Genetic analysis of segregation distortion of molecular markers in maize F2 population. Act Agr Sinica 30(10):913–918 ((In chinese))

    CAS  Google Scholar 

  • Zeng M, Pu W (1981) The relative analyses on maize cultivar Menghai four-row wax. J Genet Genomics 8(1):91–96 ((In chinese))

    Google Scholar 

  • Zhou J-Q, Guo Y-Q, Gao Y-F, Li J-S, Yan J-B (2011) A SSR linkage map of maize×teosinte F2 population and analysis of segregation distortion. Agr Sci China 10(2):166–174

    Article  CAS  Google Scholar 

Download references

Funding

This research was provided by the National Basic Research Program of China (the “973” project, 2014CB138203), the State Key Laboratory of Grassland Agro-ecosystems (SKLGAE201509), and the National Natural Science Foundation of China (31101161).

Author information

Authors and Affiliations

Authors

Contributions

J.L and T.R conceived and designed the experiments. ZC, KH, YY, DT, JN, PL, and LW conducted phenotyping measurement in the field trial and performed the experiments. ZC analyzed the data. ZC and JL wrote and revised the manuscript.

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Ethics approval and consent to participate

All of the authors have read and have abided by the statement of ethical standards for the manuscript submitted to Molecular Breeding.

Consent for publication

All of the authors approved the manuscript published in Molecular Breeding.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Hu, K., Yin, Y. et al. Identification of a major QTL and genome-wide epistatic interactions for single vs. paired spikelets in a maize-teosinte F2 population. Mol Breeding 42, 9 (2022). https://doi.org/10.1007/s11032-022-01276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-022-01276-x

Keywords

Navigation