Skip to main content
Log in

Construction of chromosome segment substitution lines of Chinese cabbage (Brassica rapa L. ssp. pekinensis) in the background of RcBr (B. rapa L. ssp. dichotoma) and characterization of segments representing the bolting trait

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Chromosome segment substitution lines (CSSLs) are useful tools for precise mapping of quantitative trait loci (QTLs) and evaluation of gene actions or interactions in theoretical studies. To facilitate the genetic analysis of complex traits and use of marker-assisted breeding in Brassica rapa, we developed a set of CSSLs using the extremely early-flowering inbred line RcBr as the recipient and extremely late-bolting Chinese cabbage variety 08A061 as the donor parent. The CSSL population consisted of 120 lines containing a total of 275 substituted segments, of which 47 lines contained only one substituted segment. The total length of the substituted segments spanned 2489.75 cM with an average length of 9.05 cM, representing 91.0% of the B. rapa genome and each line consisting of an average 98.1% of the recurrent parent genome. A total of 15 putative additive QTLs and 10 pairwised epistatic QTLs for three bolting indices were subsequently detected by QTL IciMapping 3.2 under two growth environments. Phenotypic variation explained by the additive QTLs, with the total variation ranging from 3.31 to 31.29% and 10.04 to 75.83%, respectively. Overall, the epistatic QTLs explained only a small amount of the phenotypic variation. The CSSLs and analyses presented here will help enhance our understanding of the genetics of bolting in B. rapa, thereby facilitating future molecular breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ajisaka H, Kuginuki Y, Yui S, Enomoto S, Hirai M (2001) Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica campestris L. ssp. pekinensis syn. Rapa L.) using bulked segregant analysis. Euphytica 118:75–81

    Article  CAS  Google Scholar 

  • Arbelaez JD, Moreno LT, Singh N, Tung CW, Maron LG, Ospina Y, Martinez CP, Grenier C, Lorieux M, McCouch S (2015) Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga. Mol Breed 35:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrantes W, Fernández-del-Carmen A, López-Casado G, González-Sánchez MA, Fernández-Muñoz R, Granell A, Monforte AJ (2014) Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Mol Breed 34:1817–1831

    Article  Google Scholar 

  • Bonnema G (2015) The Brassica rapa genome: molecular mapping and cloning of genes and QTLs in Brassica rapa. Springer, Berlin, pp P131–P144

    Book  Google Scholar 

  • Carpio DP, Basnet PK, De Vos RCH, Maliepaard C, Visser C, Bonnema G (2011) The patterns of population differentiation in a Brassica rapa core collection. Theor Appl Genet 122:1105–1118

    Article  Google Scholar 

  • Ebitani T, Takeuchi Y, Nonue Y, Yamamoto T, Takeuchi K, Yano M (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed Sci 55:65–73

    Article  CAS  Google Scholar 

  • Elers B, Wiebe HJ (1984) Flower formation of Chinese cabbage I. Response to vernalization and photoperiods. Scientia Hortic 22:219–231

    Article  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79(3):175–179

    Article  CAS  Google Scholar 

  • Fletcher RS, Mullen JL, Yoder SY, Bauerle WL, Reuning G, Sen S, Meyer E, Juenger TE, Mckay JK (2013) Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits. BMC Genomics 14:655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E, Bellis FD, Faye I, Ndoye O, Leal-Bertioli SCM, Valls JFM, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2012) Construction of chromosome segments substitution lines in peanut (Arachis hypogaea L.) using a wide synthetic and QTL mapping for plant morphology. PLoS One 7:e48642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frary A, Nesbitt TC, Fray A, Grandillo S, Knaap EVD, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Matsumoto S (2013) Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 8:e54745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell PM, Marshall DF, Lydiate DJ (1996) Towards developing intervarietal substitution lines in Brassica napus using marker assisted selection. Genome 39:348–358

    Article  CAS  PubMed  Google Scholar 

  • Kakizaki T, Kato T, Fukino N, Ishida M, Hatakeyama K, Matsumoto S (2011) Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breed Sci 61:151–159

    Article  Google Scholar 

  • Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart C, Vries HB, Effgen S, Vreugdenhil D, Koornneef M (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamoto N, Yui S, Nishikswa K, Takahata Y, Yokoi S (2014) A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196:213–223

    Article  CAS  Google Scholar 

  • Li F, Kiatshiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen JX, Tu JX, Fu TD (2012) A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One 7:e44245

    Article  Google Scholar 

  • Li XN, Wang WK, Wang Z, Li KN, Lim YP, Piao ZY (2015) Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa. Front Plant Sci 6:432

    PubMed  PubMed Central  Google Scholar 

  • Liu YT, Li CY, Shi XX, Feng H, Wang YG (2016) Identification of QTLs with additive, epistatic, and QTL × environment interaction effects for the bolting trait in Brassica rapa L. Euphytica 210:427–439

    Article  CAS  Google Scholar 

  • Lou P, Zhao JJ, Kim JS, Shen SX, Carpio DP, Song XF, Jin M, Vreugdenhil D, Wang XW, Koornneer M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016

    Article  CAS  PubMed  Google Scholar 

  • Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409

    Article  CAS  PubMed  Google Scholar 

  • Mahone GS, Frisch M, Miedaner T, Wilde P, Worthmann H, Fakle KC (2013) Identification of quantitative trait loci in rye introgression lines carrying multiple donor chromosome segments. Theor Appl Genet 126:49–58

    Article  PubMed  Google Scholar 

  • Mao Y, Wu F, Yu X, Bai J, He Y (2013) miR319a-targeted BrpTCP genes modulates head shape in Brassica rapa by differential cell division arrest in leaf region. Plant Physiol 164:710–720

    Article  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, CGSNL (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • Mero CE, Honma S (1985) Inheritance of bolting resistance in an intraspecific Chinese cabbage × turnip cross. Hort Science 20:881–882

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Tamura K, Hayashi M, Fujimori Y, Ohkawa Y, Kuginuki Y, Harada K (2005) Mapping of QTL for bolting time in Brassica rapa (syn. campestris) under different environmental conditions. Breed Sci 55:127–133

    Article  CAS  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao WH, Qi L, Cheng ZJ, Su L, Sun Y, Ren JF, Zheng XM, Yang QW (2016) Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311. BMC Genomics 17:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu XJ, Chen K, Li WK, Qu XX, Zhu YJ, Xing DY, Yang LW, Fan FJ, Yang J, Xu JL, Zheng TQ, Li ZK (2017) Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.) Theor Appl Genet 130:951–967

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsay LD, Jennings DE, Bohuon EJR, Arthur AE, Lydiate DJ, Kearsey MJ, Marshall DF (1996) The construction of a substitution library of recombinant backcross lines in Brasscia oleracea for the precision mapping of quantitative trait loci. Genome 39:558–567

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti MC, Castelletti S, Tuberosa R (2011) Genetic dissection of mazie phenology using an intraspecific introgression library. BMC Plant Biol 11:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai T, Ikka T, Kondo K, Nonoue Y, Ono N, Arai-Sanoh Y, Yoshinaga S, Nakano H, Yano M, Kondo M, Yamamoto T (2014) Genetic mechanism underlying yield potential in the rice high-yield cultivar Takanari, based on reciprocal chromosome segment substitution lines. BMC Plant Biol 14:295

    Article  PubMed  PubMed Central  Google Scholar 

  • Teutonico RA, Osborn TC (1995) Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet 91:1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza sativa L.) background and characterization of introgressed segments associated yield-associated traits. Theor Appl Genet 112:570–580

    Article  CAS  PubMed  Google Scholar 

  • van Berloo R (1999) GGT: software for the display of graphical genotypes. J Hered 90:328–329

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart, software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J (2006) QTL mapping of grain length in rice (Oryza sativa) using chromosome segment substitution lines. Genet Res 88:93–104

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhu YJ, Song XL, Cao ZB, Ding YZ, Liu BL, Zhu XF, Wang S, Guo WZ, Zhang TZ (2012) Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet 124:1415–1428

    Article  PubMed  Google Scholar 

  • Wang YG, Zhang L, Ji XX, Yan JF, LV XX, Liu YT, Feng H (2014) Mapping of quantitative trait loci for the bolting trait in Brassica rapa under vernalizing conditions. Genet Mol Res 13:3927–3939

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wei KY, Cheng F, Li SK, Wang Q, Zhao JJ, Bonnema G, Wang XW (2012) A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ (2006) Development of a wide population of chromosome single segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.) Genome 49:476–484

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DPD, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64(14):4503–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu JJ, Zhao Q, Du PN, Xu CW, Wang BH, Feng Q, Liu QQ, Tang SZ, Gu MH, Han B, Liang GH (2010) Developing high throughout genotyped chromosome segment substitution lines based on population whole-genome sequencing in rice (Oryza sativa L.) BMC Genomics 11:656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Yu YJ, Zhang FL, Zou ZR, Zhao XY, Zhang DS, Xu JB (2007) Linkage map construction and quantitative trait loci analysis for bolting based on a double haploid population of Brassica rapa. J Integr Plant Biol 49:664–671

    Article  CAS  Google Scholar 

  • Yano M (2001) Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol 4:130–135

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concepts of graphical genotypes. Theor Appl Genet 77:95–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao Q, Sun ZZ, Zhang CQ, Feng Q, Tang SZ, Liang GH, Gu MH, Han B, Liu QQ (2011) Development and high-throughput genotyping of substitution lines carrying the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics 38:603–611

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Kulkarni V, Liu NN, Carpio DPD, Bucher J, Bonnema G (2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot 61(6):1817–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu WJ, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, Chen T, Wang CL (2009) Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 93-11 and japonica donor Nipponbare. Plant Mol Bio Rep 27:126–131

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) [grant number 31772296] and the Provincial Natural Science Foundation of Liaoning, China [grant number 20170540795].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yugang Wang or Hui Feng.

Electronic supplementary material

Fig. S1

Lengths of the substituted chromosome segments in the 120 CSSLs. (GIF 85 kb)

High resolution image (TIFF 1892 kb)

Fig. S2

Frequency distribution in the CSSL population of the three bolting indices under the two test environments. (GIF 47 kb)

High resolution image (TIFF 40480 kb)

Fig. S3

Chromosomal positions of additive QTL in the CSSL and RIL populations. QTL for the three bolting indices (BI, DE, and FT) are shown in red, blue, and green, respectively. QTL identified in the CSSL and RIL populations are presented by solid and dotted lines, respectively. (GIF 3458 kb)

High resolution image (TIFF 2703 kb)

Table S1

(DOC 45 kb)

Table S2

(DOC 33 kb)

Table S3

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, X., Wang, X. et al. Construction of chromosome segment substitution lines of Chinese cabbage (Brassica rapa L. ssp. pekinensis) in the background of RcBr (B. rapa L. ssp. dichotoma) and characterization of segments representing the bolting trait. Mol Breeding 38, 35 (2018). https://doi.org/10.1007/s11032-018-0794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0794-1

Keywords

Navigation