Skip to main content
Log in

Allelic variation and geographic distribution of vernalization genes HvVRN1 and HvVRN2 in Chinese barley germplasm

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Knowledge of the allelic variation and epistatic interaction of vernalization genes is crucial to understanding seasonal growth habit and adaptability of genetic resources in cultivated (Hordeum vulgare) and wild (Hodeum spontaneum) barley. In this research, 1398 Chinese barley accessions were characterized with molecular markers for vernalization genes HvVRN1 and HvVRN2. Different combinations of haplotypes at these two vernalization genes were present at different frequencies in wild barley, landraces and modern cultivars. All of the HvVRN1 haplotypes except HvVRN1-7 (V 1-7 ) and HvVRN1-Hs (V 1-Hs ) were identified in the Chinese barley collection chosen for this study. Haplotype V 1-8 occurred at the highest frequency in spring V 1 alleles, and V 1-1 , V 1-4 and V 1-8 had broad geographic distributions in China. Haplotypes V 1-2 and V 1-3 are restricted to modern cultivars as they were introduced from exotic germplasm. A total of 18 HvVRN1/HvVRN2 multilocus haplotypes were identified. Most of the HvVRN1/HvVRN2 haplotypes were present in materials from the Yellow-Huai River Valley and Middle-Lower Yangtze Valley ecological zones, birthplace of Chinese farming. The predominant combinations in landraces were V 1-8 /V 2 and v 1 /V 2 , but v 1 /v 2 made up the highest proportion of modern cultivars. Haplotypes V 1-5 /v 2 , V 1-10 /V 2 and V 1-9 /V 2 showed a correlation with region. Our results confirmed the presence or absence of conserved regulatory elements and the length of the first intron of HvVRN1 plays a determinant role in the vernalization requirement of barley. This study provides useful information for breeding and utilization of Chinese barley germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    Article  CAS  PubMed  Google Scholar 

  • Blake T, Blake V, Bowman J, Abdel-Haleem H (2011) Barley feed uses and quality improvement. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiley-Blackwell, Oxford, pp 522–531

    Chapter  Google Scholar 

  • Chen A, Li C, Hu W, Lau MY, Lin H, Rockwell NC, Martin SS, Jernstedt JA, Lagarias JC, Dubcovsky J (2014) PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci USA 111:10037–10044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O’Sullivan DM (2007) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Cockram J, Hones H, O’Sullivan DM (2011) Genetic variation at flowering time loci in wild and cultivated barley. Plant Genet Res 9:264–267

    Article  CAS  Google Scholar 

  • Collins HM, Burton RA, Topping DL, Liao M-L, Bacic A, Fincher GB (2010) Review: variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chem 87:272–282

    Article  CAS  Google Scholar 

  • Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109:16969–16973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B (2015) Direct links between the vernalization response and other key traits of cereal crops. Nat Commun 6:5882

    Article  PubMed  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Chen C, Yan L (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15:395–407

    Article  CAS  Google Scholar 

  • Ergon A, Hamland H, Rognli OA (2013) Differential expression of VRN1 and other MADS-box genes in Festuca pratensis selections with different vernalization requirements. Biol Plant 57:245–254

    Article  CAS  Google Scholar 

  • Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom 273:54–65

    Article  CAS  Google Scholar 

  • Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemming MN, Fieg S, Peacock WJ, Dennis ES, Trevaskis B (2009) Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genom 282:107–117

    Article  CAS  Google Scholar 

  • Karsai I, Szucs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Kóti K, Karsai I, Szűcs P, Horváth C, Mészáros K, Kiss GB, Bedő Z, Hayes PM (2006) Validation of the two-gene epistatic model for vernalization response in a winter × spring barley cross. Euphytica 152:17–24

    Article  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    Article  CAS  PubMed  Google Scholar 

  • Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu LS (1996) Chinese barley genetics. Chinese Agricultural Press, Beijing (in chinese)

    Google Scholar 

  • Ma DQ, Xu TW (1988) The research on classification and origin of cultivated barley in Tibet autonomous region. Sci Agric Sin 21:7–14

    Google Scholar 

  • Oliver SN, Deng W, Casao MC, Trevaskis B (2013) Low temperatures induce rapid changes in chromatin state and transcript levels of the cereal VERNALIZATION1 gene. J Exp Bot 64:2413–2422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Preston JC, Kellogg EA (2008) Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering. Plant Physiol 146:265–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saisho D, Ishii M, Hori K, Sato K (2011) Natural variation of barley vernalization requirements: implication of quantitative variation of winter growth habit as an adaptive trait in East Asia. Plant Cell Physiol 52:775–784

    Article  CAS  PubMed  Google Scholar 

  • Sasani S, Hemming MN, Oliver SN, Greenup A, Tavakkol-Afshari R, Mahfoozi S, Poustini K, Sharifi H-R, Dennis ES, Peacock WJ (2009) The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). J Exp Bot 60:2169–2178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seppänen MM, Pakarinen K, Jokela V, Andersen JR, Fiil A, Santanen A, Virkajärvi P (2010) Vernalization response of Phleum pratense and its relationships to stem lignification and floral transition. Ann Bot 106:697–707

    Article  PubMed Central  PubMed  Google Scholar 

  • Shao QQ, Li CS, Ba SCR (1975) Origin and evolution of cultivated barley. Acta Genet Sin 2:123–128

    Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell Online 11:445–458

    Article  CAS  Google Scholar 

  • Szűcs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, Chen TH, Hayes PM (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genom 277:249–261

    Article  Google Scholar 

  • Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in barley. In: Nilan RA (ed) Barley genetics II. Washington State University Press, Pullman, pp 388–408

    Google Scholar 

  • Tashi N, Yawei T, Xingquan Z (2013) Food preparation from hulless barley in Tibet. In: Zhang GP (ed) Advances in barley sciences. Springer, The Netherlands, pp 151–158

    Chapter  Google Scholar 

  • Trevaskis B (2010) The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct Plant Biol 37:479–487

    Article  CAS  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA 100:13099–13104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    Article  CAS  PubMed  Google Scholar 

  • Ullrich SE (2011) Significance, adaptation, production, and trade of barley. In: Ullrich SE (ed) Barley: production, improvement, and uses. Wiley-Blackwell, Oxford, pp 3–13

    Chapter  Google Scholar 

  • von Bothmer R, Sato K, Komatsuda T, Yasuda S, Fischbeck G (2003) The domestication of cultivated barley. In: von Bothmer R, Van Hintum Th, Knüpffer H, Sato K (eds) Diversity in Barley (Hordeum vulgare). Elsevier, Amsterdam, pp 9–27

    Chapter  Google Scholar 

  • von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen TH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    Article  CAS  Google Scholar 

  • Xu T (1987) Origin and phlylogeny of cultivated barley in China. Barley Genet 5:91–95

    Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004a) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Yan LL, Artem Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Robert McIntosh, University of Sydney, for kindly reviewing the manuscript. This research was financially supported by the National Key Technology R&D Program of the Ministry of Science and Technology (2012BAD03B01-2 and 2013BAD01B05-2), National 863 Project (2012AA101105), China Agriculture Research System (CARS-05) and the Agricultural Science and Technology Innovation Program.

Author contribution statement

DD performed the analysis of HvVRN1 and HvVRN2 haplotypes. GD, LZ, DX and ZS prepared the materials and performed DNA extraction. NT, XY and JZ phenotyped materials grown in the field and greenhouse. JZ and GG designed the experiment and prepared the manuscript. All authors have read and approved the final manuscript. Chinese barley germplasms are available for researchers and non-profit breeders by request from the National Genebank of China (http://www.cgris.net/) based on material transfer agreements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Ganggang Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Identification of HvVRN1 and HvVRN2 alleles. Full-length Hvvrn1 (v 1 ) and V 1-6 were identified with one codominant marker. Primer pair 0.5F/R generated 1,023 bp (v 1 ) and 537 bp (V 1-6 ) products respectively. M. DL2000 DNA ladder; 1. ZDM01100 (v 1 /V 2 ); 2. ZDM09992 (v 1 /v 2 ); 3. ZDM01395 (V 1-1 /v 2 ); 4. ZDM10061 (V 1-2 /v 2 ); 5. ZDM10019 (V 1-3 /v 2 ); 6. ZDM00122 (V 1-4 /v 2 ); 7. ZDM01201 (V 1-5 /v 2 ); 8. ZDM00048 (V 1-6 /V 2 ); 9. ZDM01716 (V 1-8 /V 2 ); 10. ZDM08860 (V 1-9 /V 2 ); 11. ZDM03589 (V 1-10 /V 2 ). Supplementary material 1 (JPEG 1600 kb)

Table S1

Materials chosen for this study. +: Phenotyped by spring sown and in green house; S: spring SGH; W: winter SGH; F:facultative SGH. Supplementary material 2 (XLSX 97 kb)

Supplementary material 3 (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dondup, D., Dong, G., Xu, D. et al. Allelic variation and geographic distribution of vernalization genes HvVRN1 and HvVRN2 in Chinese barley germplasm. Mol Breeding 36, 11 (2016). https://doi.org/10.1007/s11032-016-0434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0434-6

Keywords

Navigation