Skip to main content
Log in

Lack of structure in the gene pool of the highly polyploid ornamental chrysanthemum

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Selection of clonally propagated chrysanthemums is mostly performed on F1 hybrids using phenotypic characteristics without the use of molecular information. We applied 448 amplified fragment length polymorphism markers to a set of 81 accessions, mainly from the European gene pool, covering the different horticultural types (cut, pot and garden varieties) and originating from the most important European chrysanthemum breeders. The average pairwise genetic similarity of 0.69 was moderate to rather high. Neighbour-joining clustering resulted in no grouping of the accessions, either by their common origin or their horticultural type, or by similarities in important phenotypic characteristics. The structure of the dendrogram could not be supported by bootstrap analysis. Furthermore, network analysis using SplitsTree, principal coordinate analysis via DARwin or analysis of the population with structure did not differentiate reliable and invariable clusters. Therefore, we tested the marker saturation by plotting the mean coefficient of variation for every pairwise similarity of the bootstrap analysis against the different numbers of markers. We showed that the number of markers is sufficient for a precise estimate of genetic similarity and that the lack of bootstrap support is not due to a low genetic diversity or a lack of marker information, but most likely resulted from the breeding history of the cultivars, involving repeated backcrosses and the exchange of genotypes between breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson NO, Ascher PD, Widmer RE (1992) Inbreeding depression in garden and glasshouse chrysanthemums: germination and survivorship. Euphytica 62:155–169. doi:10.1007/BF00041750

    Article  Google Scholar 

  • Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39(1):228–237

    Article  CAS  Google Scholar 

  • Cockram J, White J, Leigh F, Lea V, Chiapparino E, Laurie D, Mackay I, Powell W, O’Sullivan D (2008) Association mapping of partitioning loci in barley. BMC Genet 9(1):16

    Article  PubMed  Google Scholar 

  • Dai S, Chen J-YA, Li W-BB (1998) Application of RAPD analysis in the study on the origin of Chinese cultivated Chrysanthemum. Acta Bot Sin 40(11):1053–1059

    Google Scholar 

  • Dowrick GJ, El-Bayoumi A (1966) The origin of new forms of the garden Chrysanthemum. Euphytica 15:32–38. doi:10.1007/BF00024077

    Article  Google Scholar 

  • Drewlow LW, Ascher PD, Widmer RE (1973) Genetic studies of self incompatibility in the garden chrysanthemum, Chrysanthemum morifolium ramat. Theor Appl Genet 43:1–5. doi:10.1007/BF00277824

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  • Garcia AAF, Benchimol LL, Barbosa AMM, Geraldi IO, Souza CL Jr, de Souza AP (2004) Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Gen Mol Biol 27:579–588

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Oliver M, Gómez-Paniagua H, de Vicente M (2000) Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101:860–864. doi:10.1007/s001220051553

    Article  CAS  Google Scholar 

  • Gawenda I, Debener T (2009) Genetic diversity of Osteospermum genotypes analysed by AFLP and chloroplast SSR Markers. Eur J Hort Sci 74(2):86–94

    CAS  Google Scholar 

  • Gong L, Deng Z (2012) Selection and application of SSR markers for variety discrimination, genetic similarity and relation analysis in gerbera (Gerbera hybrida). Sci Hort 138:120–127

    Article  CAS  Google Scholar 

  • Huang SC, Tsai CC, Sheu CS (2000) Genetic analysis of chrysanthemum hybrids based on RAPD molecular markers. Bot Bull Acad Sin 41(4):257–262

    CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267. doi:10.1093/molbev/msj030

    Article  PubMed  CAS  Google Scholar 

  • Koopman WJM, Wissemann V, de Cock K, van Huylenbroeck J, de Riek J, Sabatino GJH, Visser D, Vosman B, Ritz CM, Maes B, Werlemark G, Nybom H, Debener T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). Am J Bot 95(3):353–366. doi:10.3732/ajb.95.3.353

    Article  PubMed  CAS  Google Scholar 

  • Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2008) Automatic online tuning for fast Gaussian summation. In: Advances in neural information processing systems (NIPS)

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10):5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet J (2006) DARwin software http://darwin.cirad.fr/

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Sanderson MJ, Wojciechowski MF (2000) Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (Leguminosae). Syst Biol 49(4):671–685

    Article  PubMed  CAS  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6(2):569–572. doi:10.1111/j.1471-8286.2006.01225.x

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2003) Applying the bootstrap in phylogeny reconstruction. Stat Sci 18(2):256–267

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. http://www.R-project.org/

  • Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, Osborn TC (1994) Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor Appl Genet 88(8):973–980. doi:10.1007/BF00220804

    Article  Google Scholar 

  • Tivang JG, Nienhuis J, Smith OS (1994) Estimation of sampling variance of molecular marker data using the bootstrap procedure. Theor Appl Genet 89(2–3):259–264

    Google Scholar 

  • van de Jones C, Edwards KJ, Castaglione S, Winfield MO, Sala F, Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3(5):381–390

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23(21):4407–4414. doi:10.1093/nar/23.21.4407

    Article  PubMed  CAS  Google Scholar 

  • Vosman B, Visser D, Voort J, Smulders M, Eeuwijk F (2004) The establishment of ‘essential derivation’ among rose varieties, using AFLP. Theor Appl Genet 109(8):1718–1725. doi:10.1007/s00122-004-1809-3

    Article  PubMed  CAS  Google Scholar 

  • Wegner H, Debener T (2008) Novel breeding strategies for ornamental Dahlias II: molecular analyses of genetic distances between Dahlia cultivars and wild species. Eur J Hort Sci 73(3):97–103

    CAS  Google Scholar 

  • Wolff K (1996) RAPD analysis of sporting and chimerism in chrysanthemum. Euphytica 89(2):159–164

    Article  CAS  Google Scholar 

  • Wolff K, Zietkiewicz E, Hofstra H (1995) Identification of chrysanthemum cultivars and stability of DNA fingerprint patterns. Theor Appl Genet 91(3):439–447

    Article  CAS  Google Scholar 

  • Yang W, Glover BJ, Rao G, Yang J (2006) Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytol 171(4):875–886. doi:10.1111/j.1469-8137.2006.01779.x

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Li F (2010) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hort 125(3):422–428. doi:10.1016/j.scienta.2010.03.028

    Article  CAS  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breed 27(1):11–23. doi:10.1007/s11032-010-9409-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by funds of the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support programme. We would like to thank the company Hubert Brandkamp for supplying plant material for the gene pool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Linde.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klie, M., Menz, I., Linde, M. et al. Lack of structure in the gene pool of the highly polyploid ornamental chrysanthemum. Mol Breeding 32, 339–348 (2013). https://doi.org/10.1007/s11032-013-9874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9874-4

Keywords

Navigation