Skip to main content
Log in

Quantitative trait loci for sugarcane resistance to the spotted stem borer Chilo sacchariphagus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The spotted stem borer (SSB) Chilo sacchariphagus is a major pest of sugarcane, causing substantial losses in cane weight and in sucrose yield. SSB resistance is an important trait to be taken into account for sugarcane breeding programs. In order to analyse the genetic basis of the resistance to SSB, we undertook a quantitative trait allele (QTA) mapping study based on a population of 147 progenies derived from the selfing of the resistant modern cultivar R570. The experimental population was evaluated in a replicated trial for borer damage under natural infestation in two successive crop cycles. A single-factor analysis using 1,405 polymorphic markers was performed to detect marker–trait associations. Statistical thresholds based on permutation tests designed to control type I errors at a low level allowed the detection of nine QTAs whose individual size ranged between 6 and 10% of the total variation. These nine QTAs are distributed over five of the eight homeology groups of the polyploid R570 genome. Two QTAs were found to co-localize with two typical resistance gene analog clusters. Overall, eight QTAs explain altogether 42% of the total phenotypic variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aitken K, Hermann S, Karno K, Bonnett G, McIntyre L, Jackson P (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117:1191–1203

    Article  PubMed  CAS  Google Scholar 

  • Bezuidenhout CN, Goebel R, Hull PJ, Hull PJ, Schulze RE, Maharaj M (2008) Assessing the potential threat of Chilo sacchariphagus (Lepidoptera: Crambidae) as a pest in South Africa and Swaziland: realistic scenarios based on climatic indices. Afr Entomol 16:86–90. doi:10.4001/1021-3589-16.1.86

    Article  Google Scholar 

  • Butterfield M, Rutherford R, Carson D, Huckett B (2004) Application of gene discovery to varietal improvement in sugarcane. S Afr J Bot 70:167–172

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical Threshold Values for Quantitative Trait Mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Da Silva JA, White WH, Setamou M, Solis-Garcia N (2005) A molecular approach to breeding for stemborer resistance in sugarcane. In: Hogarth DM (ed) Proceedings of the XXV Congress of the international society of sugar cane technologists, January 30–February 4, Guatemala City, Guatemala, 2005. ISSCT, pp 487–491

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • Gallais A (1990) Théorie de la sélection en amélioration des plantes. Masson, Paris

  • Goebel R (1999) Caractéristiques biotiques du foreur de la canne à sucre Chilo sacchariphagus (Bojer, 1856) (Lepidoptera : Pyralidae) à l’île de la Réunion. Facteurs de régulation de ses populations et conséquences pour la lutte contre ce ravageur. Université Paul Sabatier, Toulouse

    Google Scholar 

  • Goebel R, Fernandez E, Tibère R, Alauzet C (1999) Dégâts et pertes de rendement sur la canne à sucre dus au foreur Chilo sacchariphagus (Bojer) à l’île de la Réunion (Lep.: Pyralidae). Ann Soc Entomol France 35(Supp):476–481

    Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. TAG Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.).II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Holland JB (2006) Estimating genotypic correlations and their standard errors using multivariate restricted likelihood estimation with SAS proc mixed. Crop Sci 46:642–654

    Article  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Ann Rev Phytopathol 39:285–312. doi:10.1146/annurev.phyto.39.1.285

    Article  CAS  Google Scholar 

  • Jannoo N, Grivet L, David J, D’Hont A, Glaszmann JC (2004) Differential chromosome pairing affinities at meiosis in polyploidy sugarcane revealed by molecular markers. Heredity 93:460–467

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Littel RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS system for mixed models, 2nd edn. SAS Institute Inc., Cary

    Google Scholar 

  • Martin G, Brommonschenkel S, Chunwongse J, Frary A, Ganal M, Spivey R, Wu T, Earle E, Tanksley S (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • McIntyre C, Casu R, Drenth J, Knight D, Whan V, Croft B, Jordan D, Manners J (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400

    Article  PubMed  CAS  Google Scholar 

  • McMullen MD, Simcox KD (1995) Genomic organization of disease and insect resistance genes in maize. Mol Plant-Microbe Interact 8:811–815

    Article  CAS  Google Scholar 

  • Metcalfe JR (1969) The estimation of loss caused by sugar cane moth borers. In: Williams JR, Metcalfe JR, Mungomery RW, Mathes R (eds) Pests of sugarcane. Elsevier Publishing Company, Amsterdam, pp 61–79

    Google Scholar 

  • Ming R, Wang Y, Draye X, Moore P, Irvine J, Paterson A (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  PubMed  CAS  Google Scholar 

  • Nibouche S, Tibere R (2010) Mechanism of resistance to the spotted stalk borer, Chilo sacchariphagus, in the sugarcane cultivar R570. Entomol Exp Appl 135:308–314. doi:10.1111/j.1570-7458.2010.00996.x

    Article  Google Scholar 

  • Nibouche S, Tibère R (2008) Damage assessment for selection of resistance to the spotted stalk borer and genetic correlations for resistance and yield components in sugarcane. Plant Breed 127:38–42. doi:10.1111/j.1439-0523.2008.01391.x

    Article  Google Scholar 

  • Raboin L, Oliveira K, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau J, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor and Appl Genet 112:1382–1391

    Article  CAS  Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in surgarcane. Mol Genet Genomics 269:406–419

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Tada Y, Yokozeki Y, Akagi H, Hayashi N, Fujimura T, Ichikawa N (1999) Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol Biol 40:847–855

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2004) SAS OnlineDoc® 9.1.3. SAS Institute Inc, Cary

    Google Scholar 

  • Selvi A, Mukunthan N, Shanthi RM, Govindaraj P, Singaravelu B, Karthik Prabu T (2008) Assessment of genetic relationships and marker identification in sugarcane cultivars with different levels of top borer resistance. Sugar Tech 10:53–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Tibère and C. Lallemand for field work. The authors also wish to thank J. Dintinger for his critical review of this paper. This work was funded by the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), by the Conseil Régional de la Réunion and by the European Union: European Agricultural Guidance and Guarantee Fund (AEGGF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nibouche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nibouche, S., Raboin, L.M., Hoarau, JY. et al. Quantitative trait loci for sugarcane resistance to the spotted stem borer Chilo sacchariphagus . Mol Breeding 29, 129–135 (2012). https://doi.org/10.1007/s11032-010-9531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9531-0

Keywords

Navigation