Skip to main content
Log in

Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Crenate broomrape (Orobanche crenata) is the major constraint for pea cultivation in the Mediterranean Basin and Middle East. Cultivation of resistant varieties would be the most efficient, economical and environmentally friendly way to control this parasite. However, little resistance is available within cultivated pea. Promising sources of resistance have been identified in wild peas but their use in breeding programs is hampered by the polygenic nature of the resistance. The identification of molecular markers linked to the resistance would allow tracking of the underlying genes, facilitating their introgression into pea cultivars. The main objective of this study was the identification of genomic regions associated with resistance to O. crenata. A RIL (Recombinant Inbred Lines) population derived from a cross between a resistant accession of the wild pea Pisum sativum ssp. syriacum, and a susceptible pea variety was screened for resistance to O. crenata under field conditions during two seasons. In addition, resistance reactions at different stages of the O. crenata infection cycle were assessed using a Petri dish method. The approach allowed the identification of four Quantitative Trait Loci (QTL) associated with field resistance, assessed as the number of emerged broomrape shoots per pea plant under field conditions. These identified QTLs explained individually from 10 to 17% of the phenotypic variation. In addition QTLs governing specific mechanisms of resistance, such as low induction of O. crenata seed germination, lower number of established tubercles per host root length unit, and slower development of tubercles were also identified. Identified QTLs explained individually from 8 to 37% of the variation observed depending on the trait. Host plant aerial biomass and root length were also assessed and mapped. Both traits were correlated with the level of O. crenata infection and three out of the four QTLs controlling resistance under field conditions co-localized with QTLs controlling plant aerial biomass or root length. The relationship observed among these traits and resistance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalders AJG, Pieters R (1987) Resistance in Vicia fabae to Orobanche crenata: true resistance versus hidden susceptibility. Euphytica 36:227–236

    Article  Google Scholar 

  • Akhtouch B, Muñoz-Ruz J, Melero-Vara J, Fernández-Martínez J, Dominguez J (2002) Inheritance of resistance to race F of broomrape in sunflower lines of different origins. Plant Breed 121:266–268

    Article  Google Scholar 

  • Bernhard RH, Jensen JE, Andreasen C (1998) Prediction of yield loss caused by Orobanche spp. in carrot and pea crops based on the soil seedbank. Weed Res 38:191–197

    Article  Google Scholar 

  • Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc D (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 44:468–781

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 198:963–971

    Google Scholar 

  • Díaz R, Satovic Z, Román B, Rubiales D, Cubero JI, Torres AM (2005) QTL analysis of broomrape resistance in faba bean (Vicia faba L.). Proceedings of XL Croatiam symposium on Agriculture. Faculty of Agriculture, Zagreb, Croatia

  • Domínguez J (1996) R-41, a sunflower restored inbred line, carrying two genes for resistance against a highly virulent Spanish population of Orobanche cernua. Plant Breed 115:203–204

    Article  Google Scholar 

  • FAOSTAT data (2005) http://faostat.fao.org/

  • Fernández-Aparicio M, Sillero JC, Pérez-de-Luque A, Rubiales D (2008) Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res 48(1):85–94

    Google Scholar 

  • Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Mol Breed 21:439–454

    Article  CAS  Google Scholar 

  • Gurney AL, Slate J, Press MC, Scholes JD (2006) A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol 169:199–208

    Article  CAS  PubMed  Google Scholar 

  • Haussmann BIG, Hess DE, Omanya GO, Reddy BVS, Welz HG, Geiger HH (2001) Major and minor genes for stimulation of Striga hermonthica seed germination in sorghum, and interaction with different Striga populations. Crop Sci 41:1507–1512

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. University California Experimental Station Circular 347

  • Ish-Shalom-Gordon NR, Jacobsohn R, Cohen Y (1993) Inheritance of resistance to Orobanche cumana in sunflower. Phytopathology 83:1250–1252

    Article  Google Scholar 

  • Joel DM, Hershenhorn Y, Eizenberg H, Aly R, Ejeta G, Rich PJ, Ransom JK, Sauerborn J, Rubiales D (2007) Biology and management of weedy root parasites. In: Janick J (ed) Horticultural reviews, vol 33. Wiley, New York, pp 267–350

    Chapter  Google Scholar 

  • Johnson AW, Rosebery G, Parker C (1976) A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res 16:223–227

    Article  CAS  Google Scholar 

  • Korashi AA, El Borollosy MM, Hassa EA, Abo El-Suoud MR, El-Deen Z, Koraim A (1996) Hosts of Orobanche spp. and yield losses in delta and upper Egypt. In: Moreno MT et al (eds) Advances in parasitic plant research. Junta de Andalucía, Sevilla, pp 487–493

    Google Scholar 

  • Kosambi DD (1994) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative trait using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abramson J, Barlow A, Dali MJ, Lincoln DE, Newburg L (1987) MAPMAKER: an interactive computer program for constructing genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-He`naut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Mabsoute L, Saadaoui EM (1996) Acquis de recherche sur le parasitisme des légumineuses alimentaires au Maroc: synthèse bibliographique. Al Awamia 92:55–67

    Google Scholar 

  • Moreno Marquez V (1947) El jopo (Orobanche crenata Forrks.) y las siembras tardías de habas. Boletín de Patología Vegetal y Entomología Agrícola 15:97–108

    Google Scholar 

  • Pérez-De-Luque A, Jorrín J, Cubero JI, Rubiales D (2005) Resistance and avoidance against Orobanche crenata in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res 45:379–387

    Article  Google Scholar 

  • Pérez-de-Luque A, González-Verdejo CI, Lozano MD, Dita MA, Cubero JI, González-Melendi P, Risueño MC, Rubiales D (2006a) Protein cross-linking, peroxidase and β-1, 3-endoglucanase involved in resistance of pea against Orobanche crenata. J Exp Bot 57:1461–1469

    Article  PubMed  CAS  Google Scholar 

  • Pérez-de-Luque A, Lozano MD, Cubero JI, González-Melendi P, Risueño MC, Rubiales D (2006b) Mucilage production during the imcompatible interaction between Orobanche crenata and Vicia sativa. J Exp Bot 57:931–942

    Article  PubMed  Google Scholar 

  • Pérez-Vich B, Akhtouch B, Knapp SJ, Leon AJ, Velasco L, Fernández-Martínez JM, Berry ST (2004) Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theor Appl Genet 109:92–102

    Article  PubMed  CAS  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  CAS  PubMed  Google Scholar 

  • Ramaiah KV (1987) Control of Striga and Orobanche species. A review. In: Weber HC, Forstreuter W (eds) Parasitic flowering plants. Philipps-Universität, Marburg, pp 637–664

    Google Scholar 

  • Román B, Torres AM, Rubiales D, Cubero JI, Satovic Z (2002) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forks.) resistance in faba bean (Vicia faba L.). Genome 45:1057–1063

    Article  PubMed  Google Scholar 

  • Rubiales D, Sillero JC, Moreno MT (1999) Broomrape (Orobanche crenata) as a major constraint for pea cultivation in Southern Spain. In: Cubero JI, Moreno MT, Rubiales D, Sillero JC (eds) Resistance to Orobanche: the state of the art. Junta de Andalucíıa, Sevilla, pp 83–89

    Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Cubero JI, Sillero JC (2003a) Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot 22:865–872

    Article  Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Joel DM, Alcántara C, Sillero JC (2003b) Characterization of resistance in chickpea to crenata broomrape (Orobanche crenata). Weed Sci 51:702–707

    Article  CAS  Google Scholar 

  • Rubiales D, Moreno MT, Sillero JC (2005) Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Genet Resour Crop Evol 52:853–861

    Article  Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Fernández-Aparicio M, Siller JC, Román B, Kharrat M, Khalil S, Joel DM, Riches C (2006) Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147:187–199

    Article  Google Scholar 

  • Sauerborn J, Masri H, Saxena MC, Erskine W (1987) A rapid test to screen lentil under laboratory conditions for susceptibility to Orobanche. Lens Newsletter 14:15–16

    Google Scholar 

  • Sillero JC (1999) Faba Bean breeding for resistance to diseases. PhD Thesis. University of Córdoba, Spain

  • Sillero JC, Rubiales D, Moreno MT (1999) New sources of resistance to broomrape (Orobanche crenata) in a collection of Vicia species. In: Cubero JI, Moreno MT, Rubiales D, Sillero J (eds) Resistance to Orobanche: the state of the art. Junta de Andalucía, Consejería de Agricultura y Pesca, Sevilla, pp 45–54

    Google Scholar 

  • Sillero JC, Cubero JI, Fernández-Aparicio M, Rubiales D (2005) Search for resistance to crenate broomrape (Orobanche crenata) in Lathyrus. Lathyrus Lathyrism Newsletter 4:7–9

    Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Balde S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to Mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491

    Article  PubMed  CAS  Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995–1001

    Article  Google Scholar 

  • Ter Borg S (1999) Broomrape resistance in faba bean: what do we know? In: Cubero JI, Moreno MT, Rubiales D, Sillero J (eds) Resistance to Orobanche: the state of the art. Junta de Andalucía, Consejería de Agricultura y Pesca, Sevilla, pp 25–41

    Google Scholar 

  • Valderrama MR, Román B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating genes associated with Orobanche crenata resistance in pea. Weed Res 44:323–328

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Gaffney P, Zeng Z-B (2005) Windows QTL cartographer version 2.5. Statistical genetics. North Carolina State University, Raleigh

    Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genetics 30:1–4

    Google Scholar 

  • Wegmann K, Von Elert E, Harloff HJ, Stadler M (1991) Tolerance and resistance to Orobanche. In: Wegmann K, Musselman LJ (eds) Progress in Orobanche research. Proceeding of a workshop on Orobanche, pp 318–321

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank INIA for providing a grant to the senior author and projects AGL2005-10181 and AGL2008-01239 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fondevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fondevilla, S., Fernández-Aparicio, M., Satovic, Z. et al. Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol Breeding 25, 259–272 (2010). https://doi.org/10.1007/s11032-009-9330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9330-7

Keywords

Navigation