Skip to main content
Log in

Mapping candidate genes for oleate biosynthesis and their association with unsaturated fatty acid seed content in soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The development of high-oleate soybean germplasm is hindered by the lack of knowledge of the genetic factors controlling oleate phenotypic variation. In the present study, several candidate genes implicated in oleate biosynthesis were mapped and their cosegregation with oleate, linoleate and linolenate quantitative trait loci (QTLs) was investigated. FAD2-2C, a previously described ω-6 desaturase isoform, was localized on linkage group E; whereas, a novel FAD2-2 isoform, designated as FAD2-2D, mapped on linkage group N. In addition, two isoforms were identified for the aminoalcoholphosphotransferase-encoding GmAAPT1 gene, denoted AAPT1a and AAPT1b. A database query suggested that only one functional copy of the FAD6 gene, encoding a plastid localized ω-6 desaturase, exists in the soybean genome. AAPT1a and FAD6 mapped on linkage group D1b, 23.40 cM apart. Linolenate QTLs with minor effects were identified near the FAD6 and AAPT1a markers in two segregating populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bachlava E, Dewey RE, Auclair J, Wang S, Burton JW, Cardinal AJ (2008) Mapping genes encoding microsomal omega-6 desaturase enzymes and their cosegregation with QTL affecting oleate content in soybean. Crop Sci 48:640–650. doi:10.2135/cropsci2007.07.0381

    Article  CAS  Google Scholar 

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci (in press)

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Wilkinson DB (ed) 49th annual corn and sorghum research conference American seed trade association, Chicago

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2002) GenBank. Nucleic Acids Res 30:17–20. doi:10.1093/nar/30.1.17

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury

    Google Scholar 

  • Brim CA (1966) A modified pedigree method of selection in soybean. Crop Sci 6:220

    Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506. doi:10.1146/annurev.pp.42.060191.002343

    Article  CAS  Google Scholar 

  • Buhr T, Sato S, Ebrahim F, Xing AQ, Zhou Y, Mathiesen M, Schweiger B, Kinney A, Staswick P, Clemente T (2002) Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J 30:155–163. doi:10.1046/j.1365-313X.2002.01283.x

    Article  PubMed  CAS  Google Scholar 

  • Burkey KO, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: II. Seed yield and quality. Crop Sci 47:1488–1497. doi:10.2135/cropsci2006.08.0538

    Article  CAS  Google Scholar 

  • Burton JW, Wilson RF, Rebetzke GJ, Pantalone VR (2006) Registration of N98-4445A mid-oleic soybean germplasm line. Crop Sci 46:1010–1012. doi:10.2135/cropsci2004-0769

    Article  Google Scholar 

  • Cardinal AJ (2008) Molecular genetics and breeding for fatty acid manipulation in soybean. Plant Breed Rev 30:259–294. doi:10.1002/9780470380130.ch5

    Article  CAS  Google Scholar 

  • Cardinal AJ, Lee M, Sharopova N, Woodman-Clikeman WL, Long MJ (2001) Genetic mapping and analysis of quantitative trait loci for resistance to stalk tunneling by the European corn borer in maize. Crop Sci 41:835–845

    CAS  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung L, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Dewey RE, Wilson RF, Novitzky WP, Goode JH (1994) The AAPT1 gene of soybean complements a cholinephosphotransferase-deficient mutant in yeast. Plant Cell 6:1495–1507

    Article  PubMed  CAS  Google Scholar 

  • Fasoula VA, Harris DK, Boerma HR (2004) Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci 44:1218–1225

    Article  CAS  Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Spec Rep Agric Home Econ Experiment Stn Iowa State Univ 80:11

    Google Scholar 

  • Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames

    Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao G (1996) Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans. Plant Physiol 110:311–319. doi:10.1104/pp.110.1.311

    Article  PubMed  CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Booth R Jr, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105:635–641. doi:10.1104/pp.105.2.635

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507. doi:10.1007/s00122-006-0315-1

    Article  PubMed  CAS  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Kinney AJ (1995) Improving soybean seed quality. Induced mutations and molecular techniques for crop improvement: In Proceedings. International Atomic Energy Agency (IAEA), Vienna, 19–23 June, pp 101-113

  • Kinney AJ, Knowlton S (1998) Designer oils: the high oleic acid soybean. In: Roller S, Harlander SK (eds) Genetic modification in the food industry. Chapman & Hall, London, pp 193–213

    Google Scholar 

  • Kinoshita T, Rahman SM, Anai T, Takagi Y (1998) Genetic analysis of restriction fragment length polymorphism on fatty acid synthesis in soybean mutants and their progenies: II. High oleic acid mutants with two microsomal omega-6 fatty acid desaturase cDNAs as probes. Bull Fac Agric Saga Univ 83:37–42

    CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln ES, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181. doi:10.1016/0888-7543(87)90010-3

    Article  PubMed  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS® System for mixed models. SAS Institute Inc, Cary

    Google Scholar 

  • Mian MAR, Bailey MA, Tamulonis JP, Shipe ER, Carter TE Jr, Parrott WA, Ashley DA, Hussey RS, Boerma HR (1996) Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet 93:1011–1016. doi:10.1007/BF00230118

    Article  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed  CAS  Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Google Scholar 

  • Panthee DR, Pantalone VR, Saxton AM (2006) Modifier QTL for fatty acid composition in soybean oil. Euphytica 152:67–73. doi:10.1007/s10681-006-9179-3

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the www for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sandhu D, Alt JL, Scherder CW, Fehr WR, Bhattacharyya MK (2007) Enhanced oleic acidcontent in the soybean mutant M23 is associated with the deletion in the Fad2-1a gene encoding a fatty acid desaturase. J Am Oil Chem Soc 84:229–235. doi:10.1007/s11746-007-1037-5

    Article  CAS  Google Scholar 

  • SAS Institute Inc (2004) SAS/STAT software. Release 9.1.3. SAS Institute Inc, Cary

    Google Scholar 

  • Schlueter JA, Vasylenko-Sanders IF, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC (2007) The FAD2 gene family of soybean: insights into the structural and functional divergence of a paleopolyploid genome. Plant Genome, Suppl to Crop Sci 47:S14–S26

    Google Scholar 

  • Schuppert GF, Heesacker A, Slabaugh MB, Cole G, Knapp SJ (2003) The high oleic acid phenotype in sunflower is caused by epistatic interactions between oleate desaturase genes. Plant & animal genome XI conference San Diego. http://wwwintl-pagorg/11/abstracts/W15_W101_XIhtml. Accessed 3 June 2008

  • Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109. doi:10.1016/j.pbi.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  • Slack CR, Campbell LC, Browse JA, Roughan PG (1983) Some evidence for the reversibility of the cholinephosphotransferase-catalyzed reaction in developing linseed cotyledons in vivo. Biochim Biophys Acta 754:10–20

    CAS  Google Scholar 

  • Slack CR, Roughan PG, Browse JA, Gardiner SE (1985) Some properties of cholinephosphotransferase from developing safflower cotyledons. Biochim Biophys Acta 833:438–448

    CAS  Google Scholar 

  • Somerville C, Browse J (1996) Dissecting desaturation: plants prove advantageous. Trends Cell Biol 6:148–153. doi:10.1016/0962-8924(96)10002-7

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128. doi:10.1007/s00122-004-1602-3

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, Shoemaker R, Jackson S, Schmutz J, Rokhsar D (2008) Soybean genome project, DoE Joint Genome Institute. http://wwwphytozomenet/soybeanphp. Accessed 3 June 2008

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452. doi:10.1101/gr.184001

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) Joinmap® 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Walling JG, Shoemaker R, Young N, Mudge J, Jackson S (2006) Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172:1893–1900. doi:10.1534/genetics.105.051466

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh

    Google Scholar 

  • Wilson RF (2004) Seed composition. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. American Society of Agronomy Inc, Madison, pp 621–669

    Google Scholar 

  • Wilson RF, Burton JW, Pantalone VR, Dewey RE (2002) New gene combinations governing saturated and unsaturated fatty acid composition in soybean. In: Kuo TM, Gardner HW (eds) Lipid Biotechnology. Marcel Dekker Inc, IL, pp 95–113

    Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976. doi:10.1073/pnas.90.23.10972

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank William Novitzky at the USDA Soybean and Nitrogen Fixation Laboratory, Raleigh, NC, USA for providing training and equipment for the fatty acid analysis, as well as Carol Griffin for her technical expertise. This project was funded by the USDA Cooperative State Research, Education and Extension Service National Research Initiative, Plant Genome Program (award number 2003-35300-13190), and by the United Soybean Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea J. Cardinal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2008_9246_MOESM1_ESM.pdf

Suppl. Fig. 1 Alignments of the upstream, coding and downstream regions of FAD2-2B and FAD2-2D isoforms, as well as FAD2-2C and FAD2-2D isoforms. Start and stop codons for translation of the reading frames are highlighted. The alignments extend till the end of the nucleotide similarity in the upstream and downstream regions, with the exception of the FAD2-2C and FAD2-2D alignment, where part of the upstream and coding region were included in order to show the predicted start codon (PDF 30 kb)

11032_2008_9246_MOESM2_ESM.pdf

Suppl. Fig. 2 Peptide, coding and full DNA sequences of the AAPT1a and AAPT1b genes. Exons are underlined and highlighted in the genomic DNA sequences. The primers used for amplification of the AT repeat in AAPT1b are written in bold italics (PDF 42 kb)

11032_2008_9246_MOESM3_ESM.pdf

Suppl. Fig. 3 Alignment of the putative peptides of the CPT1 gene of yeast and the AAPT1a and AAPT1b isoforms of soybean. The conserved amino acids, according to Dewey et al. (1994), are highlighted (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachlava, E., Dewey, R.E., Burton, J.W. et al. Mapping candidate genes for oleate biosynthesis and their association with unsaturated fatty acid seed content in soybean. Mol Breeding 23, 337–347 (2009). https://doi.org/10.1007/s11032-008-9246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9246-7

Keywords

Navigation