Skip to main content
Log in

Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Ankylosing spondylitis (AS) is a rheumatic disease that causes inflammation and bone formation in the spine. Despite significant advances in treatment, adverse side effects have triggered research into natural compounds. Epimedium (EP) is a traditional Chinese herb with a variety of pharmacological activities, including antirheumatic, anti-inflammatory, and immunomodulatory activities; however, its direct effects on AS treatment and the underlying molecular mechanisms have not been systematically studied. Thus, here, we used network pharmacology, molecular docking, and molecular dynamics simulations to explore the targets of EP for treating AS. We constructed an interaction network to elucidate the complex relationship between EP and AS. Sixteen active ingredients in EP were screened; 80 potential targets were identified. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone, anhydroicaritin, and luteolin were the core components and TNF, IL-6, IL-1β, MMP9, and PTGS2 were the core targets. The GO and KEGG analyses indicated that EP may modulate multiple biological processes and pathways, including the AGE-RAGE, TNF, NF-κB/MAPK, and TLR signaling pathways, for AS treatment. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of EP, with stable binding within 100 nanoseconds. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone possessed the highest free energy of binding to PTGS2 and TNF (-115.575 and − 87.676 kcal/mol, respectively). Thus, EP may affect AS through multiple pathways, including the alleviation of inflammation, oxidative stress, and immune responses. In summary, we identified the active components and potential targets of EP, highlighting new strategies for the further experimental validation and exploration of lead compounds for treating AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study. The original contributions presented in this study are included in the article/supplementary material, and further inquiries can be directed to the corresponding author. 

Abbreviations

MD:

Molecular dynamics

PPI:

Protein–protein interaction

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MM-PBSA:

Molecular Mechanics Poisson-Boltzmann Surface Area

TNF:

Tumor necrosis factor

IL-6:

Interleukin 6

IL1β:

Interleukin 1β

MMP9:

Matrix metalloproteinase 9

PTGS2:

Prostaglandin G/H synthase 2

TGF-B1:

Transforming growth factor beta-1 proprotein

ESR1:

Estrogen receptor 1

RMSD:

Root mean square deviation

SASA:

Solvent accessible surface area

RMSF:

Root mean square fluctuation

OS:

Oxidative stress

COX-2:

Cyclooxygenase 2

PGE(2):

Prostaglandin E2

RAGE:

Receptor of advanced glycation end-products

PI3K-Akt:

Phosphatidilinositol 3-kinase/protein kinase B

NF-κB:

Nuclear factor-kappa B

MAPK:

Mitogen-activated protein kinase

TLRs:

Toll-like receptors

IBD:

Inflammatory bowel disease

References

  1. Kim SH, Lee SH (2023) Updates on ankylosing spondylitis: pathogenesis and therapeutic agents. J Rheum Dis 30(4):220–233

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bautista-Molano W, Fernández-Ávila DG, Brance ML, Ávila Pedretti MG, Burgos-Vargas R, Corbacho I et al (2023) Pan American league of associations for rheumatology recommendations for the management of axial spondyloarthritis. Nat Rev Rheumatol 19(11):724–737

    Article  PubMed  Google Scholar 

  3. Ward MM, Deodhar A, Akl EA, Lui A, Ermann J, Gensler LS et al (2016) American college of rheumatology/spondylitis association of America/spondyloarthritis research and treatment network 2015 recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Rheumatol 68(2):282–298

    Article  PubMed  Google Scholar 

  4. Stolwijk C, van Onna M, Boonen A, van Tubergen A (2016) Global prevalence of spondyloarthritis: a systematic review and Meta-regression analysis. Arthritis Care Res 68(9):1320–1331

    Article  Google Scholar 

  5. Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X et al (2019) Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  6. van der Heijde D, Braun J, Deodhar A, Baraliakos X, Landewé R, Richards HB et al (2019) Modified stoke ankylosing spondylitis spinal score as an outcome measure to assess the impact of treatment on structural progression in ankylosing spondylitis. Rheumatology 58(3):388–400

    Article  PubMed  Google Scholar 

  7. Ward MM, Kuzis S (2002) Medication toxicity among patients with ankylosing spondylitis. Arthritis Rheum 47(3):234–241

    Article  CAS  PubMed  Google Scholar 

  8. Li W, Yu L, Li W, Ge G, Ma Y, Xiao L et al (2023) Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: underlying mechanisms based on cell and molecular targets. Ageing Res Rev 89:101981

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Li J, Wang Y, Liang Q (2022) Taxonomy of Epimedium (Berberidaceae) with special reference to Chinese species. Chin Herb Med 14(1):20–35

    PubMed  Google Scholar 

  10. Zhang X, Tang B, Wen S, Wang Y, Pan C, Qu L et al (2023) Advancements in the biotransformation and biosynthesis of the primary active flavonoids derived from Epimedium. Molecules 28(20):7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim DR, Lee JE, Shim KJ, Cho JH, Lee HC, Park SK et al (2017) Effects of herbal Epimedium on the improvement of bone metabolic disorder through the induction of osteogenic differentiation from bone marrow-derived mesenchymal stem cells. Mol Med Rep 15(1):125–130

    Article  CAS  PubMed  Google Scholar 

  12. Qian HQ, Wu DC, Li CY, Liu XR, Han XK, Peng Y et al (2024) A systematic review of traditional uses, phytochemistry, pharmacology and toxicity of Epimedium koreanum Nakai. J Ethnopharmacol 318:116957

    Article  CAS  PubMed  Google Scholar 

  13. Ma H, He X, Yang Y, Li M, Hao D, Jia Z (2011) The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol 134(3):519–541

    Article  CAS  PubMed  Google Scholar 

  14. Xi HR, Ma HP, Yang FF, Gao YH, Zhou J, Wang YY et al (2018) Total flavonoid extract of Epimedium herb increases the peak bone mass of young rats involving enhanced activation of the AC10/cAMP/PKA/CREB pathway. J Ethnopharmacol 223:76–87

    Article  CAS  PubMed  Google Scholar 

  15. Indran IR, Liang RL, Min TE, Yong EL (2016) Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol Ther 162:188–205

    Article  CAS  PubMed  Google Scholar 

  16. Fan JY, Chang C, Qin YY, Jiang T, He DY (2022) Network meta-analysis of efficacy and safety of Chinese patent medicines in treatment of ankylosing spondylitis. Zhongguo Zhong Yao Za Zhi 47(8):2211–2227

    PubMed  Google Scholar 

  17. Courtney R, Cock IE (2022) Comparison of the antibacterial activity of Australian terminalia spp. extracts against Klebsiella pneumoniae: a potential treatment for ankylosing spondylitis. Inflammopharmacology 30(1):207–223

    Article  CAS  PubMed  Google Scholar 

  18. Lin F, Luo X, Tsun A, Li Z, Li D, Li B (2015) Kaempferol enhances the suppressive function of treg cells by inhibiting FOXP3 phosphorylation. Int Immunopharmacol 28(2):859–865

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Jiang Q, Feng X (2017) Effect of icariin on apoptosis and expression of fas, fas ligand, B cell lymphoma, and Bcl-2-associated X protein in CD4 + T lymphocytes from patients with ankylosing spondylitis. J Tradit Chin Med 37(2):207–213

    Article  PubMed  Google Scholar 

  20. Tang F, Tang Q, Tian Y, Fan Q, Huang Y, Tan X (2015) Network pharmacology-based prediction of the active ingredients and potential targets of Mahuang Fuzi Xixin decoction for application to allergic rhinitis. J Ethnopharmacol 176:402–412

    Article  CAS  PubMed  Google Scholar 

  21. Shou X, Wang Y, Zhang X, Zhang Y, Yang Y, Duan C et al (2022) Network pharmacology and molecular docking analysis on molecular mechanism of Qingzi Zhitong decoction in the treatment of ulcerative colitis. Front Pharmacol 13:727608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu L, Jiao Y, Yang M, Wu L, Long G, Hu W (2023) Network pharmacology, molecular docking and molecular dynamics to explore the potential immunomodulatory mechanisms of deer antler. Int J Mol Sci 24(12):10370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ru J, Li P, Wang J, Zhou W, Li B, Huang C et al (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S et al (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47(D1):D1102–d9

    Article  PubMed  Google Scholar 

  25. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Huang H, Laiho K, McGarvey P, Natale DA, Ross K, Vinayaka CR (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51(D1):D523–D531

    Article  Google Scholar 

  27. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1):D845–d55

    PubMed  Google Scholar 

  28. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform 54(1):1–30

    Article  Google Scholar 

  29. Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA (2000) Online mendelian inheritance in man (OMIM). Hum Mutat 15(1):57–61

    Article  CAS  PubMed  Google Scholar 

  30. Xie C, Tang H, Liu G, Li C (2022) Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking. Front Aging Neurosci 14:940166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–d13

    Article  CAS  PubMed  Google Scholar 

  32. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523

    Article  PubMed  PubMed Central  Google Scholar 

  34. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV et al (2021) RCSB protein data bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49(D1):D437-d51

    Article  CAS  PubMed  Google Scholar 

  35. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962

    Article  CAS  PubMed  Google Scholar 

  36. Gaillard T (2018) Evaluation of autodock and autodock vina on the CASF-2013 Benchmark. J Chem Inf Model 58(8):1697–1706

    Article  CAS  PubMed  Google Scholar 

  37. Brüschweiler R (2003) Efficient RMSD measures for the comparison of two molecular ensembles. Root-mean-square deviation. Proteins 50(1):26–34

    Article  PubMed  Google Scholar 

  38. Baskin LS (1968) Electric conductance and pH measurements of isoionic salt-free bovine mercaptalbumin solutions. An evaluation of root-mean-square proton fluctuations. J Phys Chem 72(8):2958–2962

    Article  CAS  PubMed  Google Scholar 

  39. Liu Z, Yu Q, Liu H (2023) Mesenchymal stem cells in heterotopic ossification in ankylosing spondylitis: a bibliometric study based on citespace and VOSViewer. J Inflamm Res 16:4389–4398

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu K, Wu L, Shi X, Wu F (2016) Protective effect of naringin against ankylosing spondylitis via ossification, inflammation and oxidative stress in mice. Exp Ther Med 12(2):1153–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quaden DH, De Winter LM, Somers V (2016) Detection of novel diagnostic antibodies in ankylosing spondylitis: an overview. Autoimmun Rev 15(8):820–832

    Article  CAS  PubMed  Google Scholar 

  42. Kwon SR (2022) The long, dynamic journey to the elucidation of the links between inflammation, ectopic bone formation, and wnt signaling in Ankylosing Spondylitis. J Rheum Dis 29(1):1–3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501

    Article  CAS  PubMed  Google Scholar 

  44. Fouache D, Goëb V, Massy-Guillemant N, Avenel G, Bacquet-Deschryver H, Kozyreff-Meurice M et al (2009) Paradoxical adverse events of anti-tumour necrosis factor therapy for spondyloarthropathies: a retrospective study. Rheumatology 48(7):761–764

    Article  CAS  PubMed  Google Scholar 

  45. Gratacós J, Collado A, Filella X, Sanmartí R, Cañete J, Llena J et al (1994) Serum cytokines (IL-6, TNF-alpha, IL-1 beta and IFN-gamma) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol 33(10):927–931

    Article  PubMed  Google Scholar 

  46. Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA et al (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clin Vaccine Immunol 13(3):319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haleagrahara N, Hodgson K, Miranda-Hernandez S, Hughes S, Kulur AB, Ketheesan N (2018) Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology 26(5):1219–1232

    Article  CAS  PubMed  Google Scholar 

  48. Kurumbail RG, Kiefer JR, Marnett LJ (2001) Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol 11(6):752–760

    Article  CAS  PubMed  Google Scholar 

  49. Radi ZA, Khan NK (2005) Effects of cyclooxygenase inhibition on bone, tendon, and ligament healing. Inflamm Res 54(9):358–366

    Article  CAS  PubMed  Google Scholar 

  50. Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet 369(9570):1379–1390

    Article  PubMed  Google Scholar 

  51. Hsieh TP, Sheu SY, Sun JS, Chen MH (2011) Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-κB regulated HIF-1α and PGE(2) synthesis. Phytomedicine 18(2–3):176–185

    Article  CAS  PubMed  Google Scholar 

  52. Feng X, Zhu S, Yan Z, Wang C, Tong W, Xu W (2020) PDGFRB as a potential therapeutic target of ankylosing spondylitis: validation following bioinformatics analysis. Cell Mol Biol 66(6):127–134

    Article  PubMed  Google Scholar 

  53. Zhai L, Yang W, Li D, Zhou W, Cui M, Yao P (2023) Network pharmacology and molecular docking reveal the immunomodulatory mechanism of rhubarb peony decoction for the treatment of ulcerative colitis and irritable bowel syndrome. J Pharm Pharm Sci 26:11225

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaur R, Mensah KA, Stricker J, Adams M, Parton A, Cedzik D et al (2022) CC-99677, a novel, oral, selective covalent MK2 inhibitor, sustainably reduces pro-inflammatory cytokine production. Arthritis Res Ther 24(1):199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kozaci LD, Sari I, Alacacioglu A, Akar S, Akkoc N (2010) Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod Rheumatol 20(1):34–39

    Article  CAS  PubMed  Google Scholar 

  57. Solmaz D, Kozacı D, Sarı İ, Taylan A, Önen F, Akkoç N et al (2016) Oxidative stress and related factors in patients with ankylosing spondylitis. Eur J Rheumatol 3(1):20–24

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee DY, Park YJ, Song MG, Kim DR, Zada S, Kim DH (2020) Cytoprotective effects of delphinidin for human chondrocytes against oxidative stress through activation of autophagy. Antioxid (Basel) 9(1):83

    Article  CAS  Google Scholar 

  59. Ye G, Xie Z, Zeng H, Wang P, Li J, Zheng G et al (2020) Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Dis 11(9):775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J et al (2017) Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. Int J Mol Sci 18(5):1001

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhuang Z, Ye G, Huang B (2017) Kaempferol alleviates the interleukin-1β-induced inflammation in rat osteoarthritis chondrocytes via suppression of NF-κB. Med Sci Monit 23:3925–3931

    Article  PubMed  PubMed Central  Google Scholar 

  62. Olla S, Siguri C, Fais A, Era B, Fantini MC, Di Petrillo A (2023) Inhibitory effect of quercetin on oxidative endogen enzymes: a focus on putative binding modes. Int J Mol Sci 24(20):15391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou Z, Zhang L, Liu Y, Huang C, Xia W, Zhou H et al (2022) Luteolin protects chondrocytes from H(2)O(2)-induced oxidative injury and attenuates osteoarthritis progression by activating AMPK-Nrf2 signaling. Oxid Med Cell Longev 2022:5635797

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li Z, Gu W, Wang Y, Qin B, Ji W, Wang Z et al (2022) Untargeted lipidomics reveals characteristic biomarkers in patients with ankylosing spondylitis disease. Biomedicines 11(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  65. Madej M, Nowak B, Świerkot J, Sokolik R, Chlebicki A, Korman L et al (2015) Cytokine profiles in axial spondyloarthritis. Reumatologia 53(1):9–13

    Article  PubMed  PubMed Central  Google Scholar 

  66. Braun J, Bollow M, Neure L, Seipelt E, Seyrekbasan F, Herbst H et al (1995) Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 38(4):499–505

    Article  CAS  PubMed  Google Scholar 

  67. Rezaiemanesh A, Mahmoudi M, Amirzargar AA, Vojdanian M, Jamshidi AR, Nicknam MH (2017) Ankylosing spondylitis M-CSF-derived macrophages are undergoing unfolded protein response (UPR) and express higher levels of interleukin-23. Mod Rheumatol 27(5):862–867

    Article  CAS  PubMed  Google Scholar 

  68. Smith JA (2015) Update on ankylosing spondylitis: current concepts in pathogenesis. Curr Allergy Asthma Rep 15(1):489

    Article  PubMed  Google Scholar 

  69. Yoshizaki A, Sato S (2015) Abnormal B lymphocyte activation and function in systemic sclerosis. Ann Dermatol 27(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shen R, Wang JH (2018) The effect of icariin on immunity and its potential application. Am J Clin Exp Immunol 7(3):50–56

    PubMed  PubMed Central  Google Scholar 

  71. Shi M, Chen X, Ye K, Yao Y, Li Y (2016) Application potential of toll-like receptors in cancer immunotherapy: systematic review. Medicine (Baltim) 95(25):e3951

    Article  Google Scholar 

  72. Luo G, Xiang L, Xiao L (2023) Quercetin alleviates atherosclerosis by suppressing oxidized LDL-induced senescence in plaque macrophage via inhibiting the p38MAPK/p16 pathway. J Nutr Biochem 116:109314

    Article  CAS  PubMed  Google Scholar 

  73. Vajdi M, Karimi A, Karimi M, Abbasalizad Farhangi M, Askari G (2023) Effects of luteolin on sepsis: a comprehensive systematic review. Phytomedicine 113:154734

    Article  CAS  PubMed  Google Scholar 

  74. Greuter T, Vavricka SR (2019) Extraintestinal manifestations in inflammatory bowel disease - epidemiology, genetics, and pathogenesis. Expert Rev Gastroenterol Hepatol 13(4):307–317

    Article  CAS  PubMed  Google Scholar 

  75. Fragoulis GE, Liava C, Daoussis D, Akriviadis E, Garyfallos A, Dimitroulas T (2019) Inflammatory bowel diseases and spondyloarthropathies: from pathogenesis to treatment. World J Gastroenterol 25(18):2162–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ebringer A, Baines M, Ptaszynska T (1985) Spondyloarthritis, uveitis, HLA-B27 and Klebsiella. Immunol Rev 86:101–116

    Article  CAS  PubMed  Google Scholar 

  77. Sieper J, Braun J, Kingsley GH (2000) Report on the fourth international workshop on reactive Arthritis. Arthritis Rheum 43(4):720–734

    Article  CAS  PubMed  Google Scholar 

  78. Kasahara K, Kerby RL, Cross TL, Everhart J, Kay C, Bolling BW et al (2023) Gut microbiota and diet matrix modulate the effects of the flavonoid quercetin on atherosclerosis. Res Sq. https://doi.org/10.21203/rs.3.rs-2431147/v1

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aa LX, Fei F, Qi Q, Sun RB, Gu SH, Di ZZ et al (2020) Rebalancing of the gut flora and microbial metabolism is responsible for the anti-arthritis effect of kaempferol. Acta Pharmacol Sin 41(1):73–81

    Article  CAS  PubMed  Google Scholar 

  80. Zhang H, Zhuo S, Song D, Wang L, Gu J, Ma J et al (2021) Icariin inhibits intestinal inflammation of DSS-induced colitis mice through modulating intestinal flora abundance and modulating p-p65/p65 molecule. Turk J Gastroenterol 32(4):382–392

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received support from the Department of Science and Technology of Sichuan Province, China (2023NSFSC1806, 2023NSFSC0679), and the National Famous Chinese Medicine Experts Inheritance Workshop Construction Project [(2022) No. 75].

Author information

Authors and Affiliations

Authors

Contributions

Methodology: XW and LW. Software: XW, LW, HW, and LH. Validation: XW and LW. Formal analysis: XW, YH, and ZL. Visualization: XW, LW, and MY. Conceptualization: BP, LW, and MY. Investigation: BP, YZ, YH, and ZL. Supervision: BP. Resources: LW, HW, and LH. Data Curation: LW, MY, and YZ. Writing—Original Draft: XW. Writing—Review & Editing: LW, MY, HW, LH, YH, ZL, YZ, and BP. Project administration: BP and LW. Funding acquisition: BP. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Bo Peng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 48.0 kb)

Supplementary material 2 (XLSX 11.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, L., Yu, M. et al. Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10877-x

Keywords

Navigation