Skip to main content
Log in

Design, synthesis, and evaluation of thiazolecarboxamide derivatives as stimulator of interferon gene inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Stimulator of interferon gene (STING) plays critical roles in the cytoplasmic DNA-sensing pathway and in the induction of inflammatory response. Aberrant cytoplasmic DNA accumulation and STING activation are implicated in numerous inflammatory and autoimmune diseases. Here, we reported the discovery of a series of thiazolecarboxamide-based STING inhibitors through a molecular planarity/symmetry disruption strategy. The privileged compound 15b significantly inhibited STING signaling and suppressed immune-inflammatory cytokine levels in both human and murine cells. In vivo experiments demonstrated 15b effectively ameliorated immune-inflammatory cytokines upregulation in MSA-2-stimulated and Trex1-D18N mice. Furthermore, compound 15b exhibited enhanced efficacy in suppressing interferon-stimulated gene 15 (ISG15), a critical positive feedback regulator of STING. Overall, compound 15b deserves further development for the treatment of STING-associated inflammatory and autoimmune diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

STING:

Stimulator of interferon gene

IFN:

Interferon

cGAS:

Cyclic GMP-AMP synthase

cGAMP:

Cyclic GMP-AMP

CDN:

Cyclic dinucleotide

ER:

Endoplasmic reticulum

TBK1:

TANK-binding kinase 1

IRF3:

Interferon regulatory factor 3

IL:

Interleukin

ISG:

Interferon-stimulated gene

CXCL10:

C-X-C motif chemokine ligand 10

SAVI:

STING-associated vasculopathy with onset in infancy

PTM:

Post-translational modifications

AGS:

Aicardi-Goutières syndrome

SLE:

Systemic lupus erythematosus

AKI:

Acute kidney injury

PROTAC:

Proteolysis-targeting chimera

IC50 :

Half-maximum inhibitory concentration

THP1:

Tohoku hospital pediatrics 1

CTD:

C-terminal domain

BMDM:

Mouse bone marrow-derived macrophage

MEF:

Mouse embryonic fibroblast

PCR:

Polymerase chain reaction

TNF:

Tumor necrosis factor

CCK-8:

Cell counting kit-8

ELISA:

Enzyme-linked immunosorbent assay

CC50 :

Concentration of 50% cytotoxicity

AUC:

Area under the curve

Cmax :

Maximum concentration

MRT:

Mean residence time

equiv:

Equivalent

DMF:

N,N-Dimethylformamide

DCM:

Dichloromethane

HATU:

2-(7-Azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate

DIPEA:

N,N-Diisopropylethylamine

TBSCl:

tert-Butyldimethylsilyl chloride

MsCl:

methanesulfonyl chloride

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

SDS-PAGE:

sodium dodecyl sulfate – polyacrylamide gel electrophoresis

NC:

nitrocellulose

BSA:

bovine serum albumin

TBST:

tris-buffered saline + tween 20

References

  1. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678. https://doi.org/10.1038/nature07317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soulat D, Bürckstümmer T, Westermayer S, Goncalves A, Bauch A, Stefanovic A, Hantschel O, Bennett KL, Decker T, Superti-Furga G (2008) The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J 27:2135–2146. https://doi.org/10.1038/emboj.2008.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538–550. https://doi.org/10.1016/j.immuni.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  4. Ablasser A, Hornung V (2013) DNA sensing unchained. Cell Res 23:585–587. https://doi.org/10.1038/cr.2013.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lioux T, Mauny MA, Lamoureux A, Bascoul N, Hays M, Vernejoul F, Baudru AS, Boularan C, Lopes-Vicente J, Qushair G, Tiraby G (2016) Design, synthesis, and biological evaluation of novel cyclic adenosine-inosine monophosphate (cAIMP) analogs that activate stimulator of interferon genes (STING). J Med Chem 59:10253–10267. https://doi.org/10.1021/acs.jmedchem.6b01300

    Article  CAS  PubMed  Google Scholar 

  6. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791. https://doi.org/10.1126/science.1232458

    Article  CAS  PubMed  Google Scholar 

  7. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–518. https://doi.org/10.1038/nature10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Danilchanka O, Mekalanos JJ (2013) Cyclic dinucleotides and the innate immune response. Cell 154:962–970. https://doi.org/10.1016/j.cell.2013.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z (2009) ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A 106:8653–8658. https://doi.org/10.1073/pnas.0900850106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abe T, Barber GN (2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J Virol 88:5328–5341. https://doi.org/10.1128/jvi.00037-14

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yum S, Li MH, Fang Y, Chen ZJ (2021) TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc Natl Acad Sci U S A 118:e2100225118. https://doi.org/10.1073/pnas.2100225118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin C, Kuffour EO, Fuchs NV, Gertzen CGW, Kaiser J, Hirschenberger M, Tang X, Xu HC, Michel O, Tao R, Haase A, Martin U, Kurz T, Drexler I, Görg B, Lang PA, Luedde T, Sparrer KMJ, Gohlke H, König R, Münk C (2023) Regulation of STING activity in DNA sensing by ISG15 modification. Cell Rep 42:113277. https://doi.org/10.1016/j.celrep.2023.113277

    Article  CAS  PubMed  Google Scholar 

  13. Decout A, Katz JD, Venkatraman S, Ablasser A (2021) The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21:548–569. https://doi.org/10.1038/s41577-021-00524-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacLauchlan S, Kushwaha P, Tai A, Chen S, Manning C, Swarnkar G, Abu-Amer Y, Fitzgerald KA, Sharma S, Gravallese EM (2023) STING-dependent interferon signatures restrict osteoclast differentiation and bone loss in mice. Proc Natl Acad Sci U S A 120:e2210409120. https://doi.org/10.1073/pnas.2210409120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frémond ML, Hadchouel A, Berteloot L, Melki I, Bresson V, Barnabei L, Jeremiah N, Belot A, Bondet V, Brocq O, Chan D, Dagher R, Dubus JC, Duffy D, Feuillet-Soummer S, Fusaro M, Gattorno M, Insalaco A, Jeziorski E, Kitabayashi N, Lopez-Corbeto M, Mazingue F, Morren MA, Rice GI, Rivière JG, Seabra L, Sirvente J, Soler-Palacin P, Stremler-Le Bel N, Thouvenin G, Thumerelle C, Van Aerde E, Volpi S, Willcocks S, Wouters C, Breton S, Molina T, Bader-Meunier B, Moshous D, Fischer A, Blanche S, Rieux-Laucat F, Crow YJ, Neven B (2021) Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J Allergy Clin Immunol Pract 9:803–818.e811. https://doi.org/10.1016/j.jaip.2020.11.007

  16. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CR, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, St Hilaire C, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518. https://doi.org/10.1056/NEJMoa1312625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wardlaw CP, Petrini JHJ (2022) ISG15 conjugation to proteins on nascent DNA mitigates DNA replication stress. Nat Commun 13:5971. https://doi.org/10.1038/s41467-022-33535-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li S, Wang Y, Wang Y (2022) Advances in genetic mechanism and clinical research of ADAR1-related neurological diseases. Fudan Univ J Med Sci 49:265–269. https://doi.org/10.3969/j.issn.1672-8467.2022.02.015

    Article  CAS  Google Scholar 

  19. Ramantani G, Kohlhase J, Hertzberg C, Innes AM, Engel K, Hunger S, Borozdin W, Mah JK, Ungerath K, Walkenhorst H, Richardt HH, Buckard J, Bevot A, Siegel C, von Stülpnagel C, Ikonomidou C, Thomas K, Proud V, Niemann F, Wieczorek D, Häusler M, Niggemann P, Baltaci V, Conrad K, Lebon P, Lee-Kirsch MA (2010) Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutières syndrome. Arthritis Rheum 62:1469–1477. https://doi.org/10.1002/art.27367

    Article  CAS  PubMed  Google Scholar 

  20. Gao X, Yang X, Chen H (2021) Aicardi-Goutières syndrome caused by TREX1 gene variation: a case report. J Clin Pediatr 39:542–545. https://doi.org/10.3969/j.issn.1000-3606.2021.07.015

    Article  Google Scholar 

  21. Rice GI, Rodero MP, Crow YJ (2015) Human disease phenotypes associated with mutations in TREX1. J Clin Immunol 35:235–243. https://doi.org/10.1007/s10875-015-0147-3

    Article  CAS  PubMed  Google Scholar 

  22. Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, de Silva U, Bailey SL, Witte T, Vyse TJ, Kere J, Pfeiffer C, Harvey S, Wong A, Koskenmies S, Hummel O, Rohde K, Schmidt RE, Dominiczak AF, Gahr M, Hollis T, Perrino FW, Lieberman J, Hübner N (2007) Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39:1065–1067. https://doi.org/10.1038/ng2091

    Article  CAS  PubMed  Google Scholar 

  23. Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, Fujii R, Ishidate F, Tanaka T, Tanaka Y, Hirokawa N, Nangaku M, Inagi R (2019) Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep 29:1261–1273.e1266. https://doi.org/10.1016/j.celrep.2019.09.050

  24. Shi L, Zha H, Pan Z, Wang J, Xia Y, Li H, Huang H, Yue R, Song Z, Zhu J (2023) DUSP1 protects against ischemic acute kidney injury through stabilizing mtDNA via interaction with JNK. Cell Death Dis 14:724. https://doi.org/10.1038/s41419-023-06247-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gong W, Lu L, Zhou Y, Liu J, Ma H, Fu L, Huang S, Zhang Y, Zhang A, Jia Z (2021) The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. Am J Physiol-renal 320:F608–F616. https://doi.org/10.1152/ajprenal.00554.2020

    Article  CAS  Google Scholar 

  26. Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C, Kaufman BA, Park J, Pei L, Baur J, Palmer M, Susztak K (2019) Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab 30:784–799.e785. https://doi.org/10.1016/j.cmet.2019.08.003

  27. Liu J, Yuan L, Ruan Y, Deng B, Yang Z, Ren Y, Li L, Liu T, Zhao H, Mai R, Chen J (2022) Novel CRBN-recruiting proteolysis-targeting chimeras as degraders of stimulator of interferon genes with in vivo anti-inflammatory efficacy. J Med Chem 65:6593–6611. https://doi.org/10.1021/acs.jmedchem.1c01948

    Article  CAS  PubMed  Google Scholar 

  28. Siu T, Altman MD, Baltus GA, Childers M, Ellis JM, Gunaydin H, Hatch H, Ho T, Jewell J, Lacey BM, Lesburg CA, Pan BS, Sauvagnat B, Schroeder GK, Xu S (2019) Discovery of a novel cGAMP competitive ligand of the inactive form of STING. ACS Med Chem Lett 10:92–97. https://doi.org/10.1021/acsmedchemlett.8b00466

    Article  CAS  PubMed  Google Scholar 

  29. Hong Z, Mei J, Li C, Bai G, Maimaiti M, Hu H, Yu W, Sun L, Zhang L, Cheng D, Liao Y, Li S, You Y, Sun H, Huang J, Liu X, Lieberman J, Wang C (2021) STING inhibitors target the cyclic dinucleotide binding pocket. Proc Natl Acad Sci U S A 118:e2105465118. https://doi.org/10.1073/pnas.2105465118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li S, Hong Z, Wang Z, Li F, Mei J, Huang L, Lou X, Zhao S, Song L, Chen W, Wang Q, Liu H, Cai Y, Yu H, Xu H, Zeng G, Wang Q, Zhu J, Liu X, Tan N, Wang C (2018) The cyclopeptide Astin C specifically inhibits the innate immune CDN sensor STING. Cell Rep 25:3405–3421.e3407. https://doi.org/10.1016/j.celrep.2018.11.097

  31. Ong WWS, Dayal N, Chaudhuri R, Lamptey J, Sintim HO (2023) STING antagonists, synthesized via Povarov-Doebner type multicomponent reaction. Rsc Medicinal Chemistry 14:1101–1113. https://doi.org/10.1039/d3md00061c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang J, Hou S, Yan X, Li W, Xiao J (2023) Discovery of novel STING inhibitors based on the structure of the mouse STING agonist DMXAA. Molecules 28:2096. https://doi.org/10.3390/molecules28072906

    Article  CAS  Google Scholar 

  33. Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, Heymann M, van der Goot FG, Turcatti G, Behrendt R, Ablasser A (2018) Targeting STING with covalent small-molecule inhibitors. Nature 559:269–273. https://doi.org/10.1038/s41586-018-0287-8

    Article  CAS  PubMed  Google Scholar 

  34. Humphries F, Shmuel-Galia L, Jiang Z, Zhou JY, Barasa L, Mondal S, Wilson R, Sultana N, Shaffer SA, Ng SL, Pesiridis GS, Thompson PR, Fitzgerald KA (2023) Targeting STING oligomerization with small-molecule inhibitors. Proc Natl Acad Sci U S A 120:e2305420120. https://doi.org/10.1073/pnas.2305420120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barasa L, Chaudhuri S, Zhou JY, Jiang ZZ, Choudhary S, Green RM, Wiggin E, Cameron M, Humphries F, Fitzgerald KA, Thompson PR (2023) Development of LB244, an irreversible STING antagonist. J Am Chem Soc 145:20273–20288. https://doi.org/10.1021/jacs.3c03637

    Article  CAS  PubMed  Google Scholar 

  36. Zhu Z, Johnson RL, Zhang Z, Herring LE, Jiang G, Damania B, James LI, Liu P (2023) Development of VHL-recruiting STING PROTACs that suppress innate immunity. Cell Mol Life Sci 80:149. https://doi.org/10.1007/s00018-023-04796-7

    Article  CAS  PubMed  Google Scholar 

  37. Luo Q, Wang Y, Hou Z, Liang H, Tu L, Xing Y, Wan C, Liu J, Wang R, Zhu L, Han W, Wu J, Lu F, Yin F, Li Z (2024) Covalent PROTAC design method based on a sulfonyl pyridone probe. Chem Commun (Cambridge, U K) 60:686–689. https://doi.org/10.1039/d3cc05127g

    Article  CAS  Google Scholar 

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishikawa M, Hashimoto Y (2011) Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J Med Chem 54:1539–1554. https://doi.org/10.1021/jm101356p

    Article  CAS  PubMed  Google Scholar 

  40. Lohning AE, Levonis SM, Williams-Noonan B, Schweiker SS (2017) A practical guide to molecular docking and homology modelling for medicinal chemists. Curr Top Med Chem 17:2023–2040. https://doi.org/10.2174/1568026617666170130110827

    Article  CAS  PubMed  Google Scholar 

  41. Marchese Robinson RL, Geatches D, Morris C, Mackenzie R, Maloney AGP, Roberts KJ, Moldovan A, Chow E, Pencheva K, Vatvani DRM (2019) Evaluation of force-field calculations of lattice energies on a large public fataset, assessment of pharmaceutical relevance, and comparison to density functional theory. J Chem Inf Model 59:4778–4792. https://doi.org/10.1021/acs.jcim.9b00601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (Certificate Number: 2023T160663), Institutes for Drug Discovery and Development, Chinese Academy of Sciences (No. SIMM0320231002), the Natural Science Foundation of China for Innovation Research Group (81821005), the Shanghai Municipal Science and Technology Major Project, the Collaborative Innovation Cluster Project of Shanghai Municipal Commission of Health and Family Planning (2020CXJQ02), and the Shandong Laboratory Program (SYS202205).

Author information

Authors and Affiliations

Authors

Contributions

ZJ and YZ contributed equally to this article. ZJ and YZ: Investigation, Methodology, Writing – original draft. XL: Investigation, Methodology. MG and WD: Conceptualization, Supervision, Writing – review & editing. ZX and HZ: Conceptualization, Investigation, Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Zuoquan Xie or Hefeng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7737 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Zhang, Y., Luo, X. et al. Design, synthesis, and evaluation of thiazolecarboxamide derivatives as stimulator of interferon gene inhibitors. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10860-6

Keywords

Navigation