Skip to main content
Log in

Sinefungin analogs targeting VP39 methyltransferase as potential anti-monkeypox therapeutics: a multi-step computational approach

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The increasing spread of the Monkeypox virus (MPXV) presents a significant public health challenge, emphasising the urgent requirement for effective treatments. Our study focuses on the VP39 Methyltransferase enzyme of MPXV as a critical target for therapy. By utilising virtual screening, we investigated natural compounds with structural similarities to sinefungin, a broad-acting MTase inhibitor. From an initial set of 177 compounds, we identified three promising compounds—CNP0346326, CNP0343532, and CNP008361, whose binding scores were notably close to that of sinefungin. These candidates bonded strongly to the VP39 enzyme, hinting at a notable potential to impede the virus. Our rigorous computational assays, including re-docking, extended molecular dynamics simulations, and energetics analyses, validate the robustness of these interactions. The data paint a promising picture of these natural compounds as front-runners in the ongoing race to develop MPXV therapeutics and set the stage for subsequent empirical trials to refine these discoveries into actionable medical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mpox (Monkeypox) https://www.who.int/news-room/fact-sheets/detail/monkeypox Accessed 1 Jan 2024

  2. Al-Tammemi AB, Albakri R, Alabsi S (2022) The outbreak of human monkeypox in 2022: a changing epidemiology or an impending aftereffect of smallpox eradication? Front Trop Dis 3:951380

    Article  Google Scholar 

  3. Aden D, Zaheer S, Kumar R, Ranga S (2023) Monkeypox (Mpox) outbreak during COVID-19 pandemic—past and the future. J Med Virol 95:e28701

    Article  CAS  PubMed  Google Scholar 

  4. Kumar N, Acharya A, Gendelman HE, Byrareddy SN (2022) The 2022 outbreak and the pathobiology of the monkeypox virus. J Autoimmun 131:102855

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shchelkunov SN, Totmenin AV, Babkin IV, Safronov PF, Ryazankina OI, Petrov NA, Gutorov VV, Uvarova EA, Mikheev MV, Sisler JR (2001) Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett 509:66–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Likos AM, Sammons SA, Olson VA, Frace AM, Li Y, Olsen-Rasmussen M, Davidson W, Galloway R, Khristova ML, Reynolds MG (2005) A tale of two clades: monkeypox viruses. J Gen Virol 86:2661–2672

    Article  CAS  PubMed  Google Scholar 

  7. Shchelkunov SN, Totmenin AV, Safronov PF, Mikheev MV, Gutorov VV, Ryazankina OI, Petrov NA, Babkin IV, Uvarova EA, Sandakhchiev LS et al (2002) Analysis of the monkeypox virus genome. Virology 297:172–194. https://doi.org/10.1006/viro.2002.1446

    Article  CAS  PubMed  Google Scholar 

  8. Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, Mixão V, Ferreira R, Santos D, Duarte S (2022) Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 28:1569–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu X, Shi H, Cheng G (2023) Mpox virus: its molecular evolution and potential impact on viral epidemiology. Viruses 15:995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tompa DR, Immanuel A, Srikanth S, Kadhirvel S (2021) Trends and strategies to combat viral infections: a review on FDA approved antiviral drugs. Int J Biol Macromol 172:524–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skvara P, Chalupska D, Klima M, Kozic J, Silhan J, Boura E (2023) Structural basis for RNA-Cap recognition and methylation by the Mpox methyltransferase VP39. Antiviral Res 216:105663

    Article  CAS  PubMed  Google Scholar 

  12. Subramaniam D, Thombre R, Dhar A, Anant S (2014) DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 4:80

    Article  PubMed  PubMed Central  Google Scholar 

  13. Silhan J, Klima M, Otava T, Skvara P, Chalupska D, Chalupsky K, Kozic J, Nencka R, Boura E (2023) Discovery and structural characterization of monkeypox virus methyltransferase VP39 inhibitors reveal similarities to SARS-CoV-2 Nsp14 methyltransferase. Nat Commun 14:2259. https://doi.org/10.1038/s41467-023-38019-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zgarbová M, Otava T, Silhan J, Nencka R, Weber J, Boura E (2023) Inhibitors of Mpox VP39 2′-O methyltransferase efficiently inhibit the monkeypox virus. Antiviral Res 218:105714. https://doi.org/10.1016/j.antiviral.2023.105714

    Article  CAS  PubMed  Google Scholar 

  15. Hercik K, Brynda J, Nencka R, Boura E (2017) Structural basis of Zika virus methyltransferase inhibition by sinefungin. Adv Virol 162:2091–2096

    CAS  Google Scholar 

  16. Silhan J, Klima M, Chalupska D, Kozic J, Boura E (2022) The structure of monkeypox virus ribose methyltransferase VP39 in complex with sinefungin provides the foundation for inhibitor design. bioRxiv. https://doi.org/10.1101/2022.09.27.509668

    Article  Google Scholar 

  17. Zheng W, Ibáñez G, Wu H, Blum G, Zeng H, Dong A, Li F, Hajian T, Allali-Hassani A, Amaya MF et al (2012) Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. J Am Chem Soc 134:18004–18014. https://doi.org/10.1021/ja307060p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimzera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  20. Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C (2021) Coconut online: collection of open natural products database. J Cheminform 13:2. https://doi.org/10.1186/s13321-020-00478-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

    Article  CAS  PubMed  Google Scholar 

  22. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. J Chem Inform Model 61:3891–3898

    Article  CAS  Google Scholar 

  23. Silva L, Ferreira E, Maryam JER, Costa G, Cruz J, Kimani N, Costa J, Bittencourt J, Cruz J, Campos J, Santos C (2023) Galantamine based novel acetylcholinesterase enzyme inhibitors: a molecular modeling design approach. Molecules 28:1035. https://doi.org/10.3390/molecules28031035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schrödinger (2021) Schrödinger Release Maestro. LLC, New York

    Google Scholar 

  25. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  26. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154. https://doi.org/10.1021/ci300363c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bauer P, Hess B, Lindahl E (2022) Gromacs 2022.2 Manual

  29. Alghamdi A, Abouzied AS, Alamri A, Anwar S, Ansari M, Khadra I, Zaki YH, Gomha SM (2023) Synthesis, molecular docking, and dynamic simulation targeting main protease (Mpro) of new, thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors. Curr Issues Mol Biol 45:1422–1442. https://doi.org/10.3390/cimb45020093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abouzied AS, Al-Humaidi JY, Bazaid AS, Qanash H, Binsaleh NK, Alamri A, Ibrahim SM, Gomha SM (2022) Synthesis, molecular docking study, and cytotoxicity evaluation of some novel 1,3,4-thiadiazole as well as 1,3-thiazole derivatives bearing a pyridine moiety. Molecules 27:6368. https://doi.org/10.3390/molecules27196368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abduljalil JM, Elfiky AA, Elgohary AM (2023) Exploration of natural compounds against the human Mpox virus DNA-Dependent RNA polymerase in silico. J Infect Public Health 16:996–1003. https://doi.org/10.1016/j.jiph.2023.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu K, Watanabe E, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des 31:201–211. https://doi.org/10.1007/s10822-016-0005-2

    Article  CAS  PubMed  Google Scholar 

  33. de Almeida RBM, Barbosa DB, do Bomfim MR, Amparo JAO, Andrade BS, Costa SL, Campos JM, Cruz JN, Santos CBR, Leite FHA et al (2023) Identification of a novel dual inhibitor of acetylcholinesterase and butyrylcholinesterase in vitro and in silico studies. Pharmaceuticals 16:95. https://doi.org/10.3390/ph16010095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Younes KM, Abouzied AS, Alafnan A, Huwaimel B, Khojali WMA, Alzahrani RM (2023) Investigating the bispecific lead compounds against methicillin-resistant staphylococcus aureus SarA and CrtM using machine learning and molecular dynamics approach. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2297012

    Article  PubMed  Google Scholar 

  35. da Fonseca AM, Caluaco BJ, Madureira JMC, Cabongo SQ, Gaieta EM, Djata F, Colares RP, Neto MM, Fernandes CFC, Marinho GS et al (2023) Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-Bond SASA MMGBSA. Mol Biotechnol. https://doi.org/10.1007/s12033-023-00831-x

    Article  PubMed  Google Scholar 

  36. Dubey A, Alawi MM, Alandijany TA, Alsaady IM, Altwaim SA, Sahoo AK, Dwivedi VD, Azhar EI (2023) Exploration of microbially derived natural compounds against monkeypox virus as viral core cysteine proteinase inhibitors. Viruses 15:251. https://doi.org/10.3390/v15010251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colizzi F, Hospital A, Zivanovic S, Orozco M (2019) Predicting the limit of intramolecular hydrogen bonding with classical molecular dynamics. Angew Chem Int Ed 58:3759–3763. https://doi.org/10.1002/anie.201810922

    Article  CAS  Google Scholar 

  38. da Silva DF, de Souza JL, da Costa DM, Costa DB Jr, Moreira POL, Fonseca ALD, Varotti FDP, Cruz JN, Dos Santos CBR, Alves CQ et al (2023) Antiplasmodial activity of coumarins isolated from Polygala boliviensis. In vitro and in silico studies. J Biomol Struct Dyn 41:13383–13403. https://doi.org/10.1080/07391102.2023.2173295

    Article  CAS  PubMed  Google Scholar 

  39. CarmoBastos ML, Silva-Silva JV, Neves Cruz J, Palheta da Silva AR, Bentaberry-Rosa AA, da Costa Ramos G, de Sousa Siqueira JE, Coelho-Ferreira MR, Percário S, Santana Barbosa Marinho P et al (2023) Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) induce apoptosis by caspase pathway in human gastric cancer cells. Pharmaceuticals 16:765. https://doi.org/10.3390/ph16050765

    Article  CAS  Google Scholar 

Download references

Funding

This research has been funded by Scientific Research Deanship at University of Ha’il - Saudi Arabia through project number RG-23 204.

Author information

Authors and Affiliations

Authors

Contributions

ASA, BH, SA, KMY, REA, AHA, WFA, and AME contributed towards conceptualisation. ASA contributed towards supervision. ASA, BH, SA, KMY, REA, AHA, WFA, and AME contributed towards the methodology and data analysis. ASA and BH contributed towards writing—original draft preparation. ASA, BH, SA, KMY, REA, AHA, WFA, and AME contributed towards Writing—review & editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Amr S. Abouzied.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1920 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouzied, A.S., Huwaimel, B., Alqarni, S. et al. Sinefungin analogs targeting VP39 methyltransferase as potential anti-monkeypox therapeutics: a multi-step computational approach. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10875-z

Keywords

Navigation