Skip to main content

Advertisement

Log in

Unraveling the anti-breast cancer activity of Cimicifugae rhizoma using biological network pathways and molecular dynamics simulation

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cimicifugae is a commonly used treatment for breast cancer, but the specific molecular mechanisms underlying its effectiveness remain unclear. In this research, we employ a combination of network pharmacology, molecular docking, and molecular dynamics simulations to uncover the most potent phytochemical within Cimicifugae rhizoma in order to delve into its interaction with the target protein in breast cancer treatment. We identified 18 active compounds and 89 associated targets, primarily associated to various biological processes such as lipid metabolism, the signaling pathway in diabetes, viral infections, and cancer-related pathways. Molecular docking analysis revealed that the two most active compounds, Formononetin and Cimigenol, exhibit strong binding to the target protein AKT1. Through molecular dynamics simulations, we found that the Cimigenol-AKT1 complex exhibits greater structural stability and lower interaction energy compared to the stigmasterol-AKT1 complex. Our study demonstrates that Cimicifugae rhizoma exerts its effects in breast cancer treatment through a multi-component, multi-target synergistic approach. Furthermore, we propose that Cimigenol, targeting AKT-1, represents the most effective compound, offering valuable insights into the molecular mechanisms underpinning its role in breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study (Table S1) are available in the Supplementary Materials of this paper.

References

  1. Cairns J (1981) The origin of human cancers. Nature 289(5796):353–357. https://doi.org/10.1038/289353a0

    Article  CAS  PubMed  Google Scholar 

  2. Bailar JC, Gornik HL (1997) Cancer undefeated. New Eng J Med 336(22):1569–1574. https://doi.org/10.1056/NEJM199705293362206

    Article  PubMed  Google Scholar 

  3. Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  PubMed  Google Scholar 

  4. Sutherland RL, Musgrove EA (2004) Cyclins and breast cancer. J Mammary Gland Biol Neoplasia 9:95–104. https://doi.org/10.1023/B:JOMG.0000023591.45568.77

    Article  PubMed  Google Scholar 

  5. Malhotra GK, Zhao X, Band H, Band V (2010) Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther 10(10):955–960. https://doi.org/10.4161/cbt.10.10.13879

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma K (2010) Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 1(2):109

    PubMed  PubMed Central  Google Scholar 

  7. Weigelt B, Geyer FC, Reis-Filho JS (2010) Histological types of breast cancer: how special are they? Mol Oncol 4(3):192–208. https://doi.org/10.1016/j.molonc.2010.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. New Eng J Med 363(20):1938–1948. https://doi.org/10.1056/nejmra1001389

    Article  CAS  PubMed  Google Scholar 

  9. Irvin WJ Jr, Carey LA (2008) What is triple-negative breast cancer? Eur J Cancer 44(18):2799–2805. https://doi.org/10.1016/j.ejca.2008.09.034

    Article  CAS  PubMed  Google Scholar 

  10. Kumar P, Aggarwal R (2016) An overview of triple-negative breast cancer. Arch Gynecol Obstet 293:247–269. https://doi.org/10.1007/s00404-015-3859-y

    Article  CAS  PubMed  Google Scholar 

  11. Loibl S, Gianni L (2017) HER2-positive breast cancer. Lancet 389(10087):2415–2429. https://doi.org/10.1016/S0140-6736(16)32417-5

    Article  CAS  PubMed  Google Scholar 

  12. Figueroa-Magalhães MC, Jelovac D, Connolly RM, Wolff AC (2014) Treatment of HER2-positive breast cancer. Breast 23(2):128–136. https://doi.org/10.1016/j.breast.2013.11.011

    Article  PubMed  Google Scholar 

  13. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L (2012) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9(1):16–32. https://doi.org/10.1038/nrclinonc.2011.177

    Article  CAS  Google Scholar 

  14. Konecny G, Pauletti G, Pegram M, Untch M, Dandekar S, Aguilar Z, Slamon DJ (2003) Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst 95(2):142–153. https://doi.org/10.1093/jnci/95.2.142

    Article  CAS  PubMed  Google Scholar 

  15. Elgene Lim MD, Metzger-Filho O, Winer EP (2012) The natural history of hormone receptor-positive breast cancer. Oncology 26(8):688

    PubMed  Google Scholar 

  16. Turner NC, Oliveira M, Howell SJ, Dalenc F, Cortes J, Gomez Moreno HL, Rugo HS (2023) Capivasertib in hormone receptor-positive advanced breast cancer. N Engl J Med 388(22):2058–2070. https://doi.org/10.1056/NEJMoa2214131

    Article  CAS  PubMed  Google Scholar 

  17. O’Sullivan CC, Clarke R, Goetz MP, Robertson J (2023) Cyclin-dependent kinase 4/6 inhibitors for treatment of hormone receptor–positive, ERBB2-negative breast cancer: a review. JAMA Oncol 9(9):1273–1282. https://doi.org/10.1001/jamaoncol.2023.2000

    Article  PubMed  Google Scholar 

  18. Hortobagyi GN (1998) Treatment of breast cancer. N Engl J Med 339(14):974–984. https://doi.org/10.1056/NEJM199810013391407

    Article  CAS  PubMed  Google Scholar 

  19. Maughan KL, Lutterbie MA, Ham PS (2010) Treatment of breast cancer. Am Fam Physician 81(11):1339–1346

    PubMed  Google Scholar 

  20. Moulder S, Hortobagyi GN (2008) Advances in the treatment of breast cancer. Clin Pharmacol Ther 83(1):26–36. https://doi.org/10.1038/sj.clpt.6100449

    Article  CAS  PubMed  Google Scholar 

  21. Tong CW, Wu M, Cho W, To KK (2018) Recent advances in the treatment of breast cancer. Front Oncol 8(227):381990. https://doi.org/10.3389/fonc.2018.00227

    Article  Google Scholar 

  22. Elkordy AA, Haj-Ahmad RR, Awaad AS, Zaki RM (2021) An overview on natural product drug formulations from conventional medicines to nanomedicines: past, present and future. J Drug Deliv Sci Technol 63:102459. https://doi.org/10.1016/j.jddst.2021.102459

    Article  CAS  Google Scholar 

  23. Lee KW, Ching SM, Hoo FK, Ramachandran V, Swamy MK (2018) Traditional medicinal plants and their therapeutic potential against major cancer types. In: Akhtar M, Swamy M (eds) Anticancer plants: natural products and biotechnological implements. Springer, Singapore

    Google Scholar 

  24. Sharma AN, Dewangan HK, Upadhyay PK (2024) Comprehensive review on herbal medicine: emphasis on current therapy and role of phytoconstituents for cancer treatment. Chem Biodivers. https://doi.org/10.1002/cbdv.202301468

    Article  PubMed  Google Scholar 

  25. Lukong KE, Ogunbolude Y, Kamdem JP (2017) Breast cancer in Africa: prevalence, treatment options, herbal medicines, and socioeconomic determinants. Breast Cancer Res Treat 166(2):351–365. https://doi.org/10.1007/s10549-017-4408-0

    Article  PubMed  Google Scholar 

  26. Cohen I, Tagliaferri M, Tripathy D (2002) Traditional Chinese medicine in the treatment of breast cancer. Semin Oncol 29(6):563–574. https://doi.org/10.1053/sonc.2002.50005

    Article  PubMed  Google Scholar 

  27. Li JX, Yu ZY (2006) Cimicifugae rhizoma: from origins, bioactive constituents to clinical outcomes. Curr Med Chem 13(24):2927–2951. https://doi.org/10.2174/092986706778521869

    Article  CAS  PubMed  Google Scholar 

  28. McKenna DJ, Jones K, Humphrey S, Hughes K (2001) Black cohosh: efficacy, safety, and use in clinical and preclinical applications. Altern Ther Health Med 7(3):93–100

    CAS  PubMed  Google Scholar 

  29. Borrelli F, Ernst E (2008) Black cohosh (Cimicifuga racemosa) for menopausal symptoms: a systematic review of its efficacy. Pharmacol Res 58(1):8–14. https://doi.org/10.1016/j.phrs.2008.05.008

    Article  PubMed  Google Scholar 

  30. Zeng P, Wang F, Zhang J, ur Rashid H, Li X, Zhang P, Wu X, (2024) Integrating network pharmacology and experimental verification to investigate the pharmacological mechanisms of Buzhong Yiqi decoction in the treatment of non-small cell lung cancer. Chem Biol Drug Des 103(1):e14414. https://doi.org/10.1111/cbdd.14414

    Article  PubMed  Google Scholar 

  31. Liske E (1998) Therapeutic efficacy and safety of Cimicifuga racemosa for gynecologic disorders. Adv Nat Ther 15(1):45–53

    CAS  Google Scholar 

  32. Gaube F, Wolfl S, Pusch L, Kroll TC, Hamburger M (2007) Gene expression profiling reveals effects of Cimicifuga racemosa (L.) NUTT. (black cohosh) on the estrogen receptor positive human breast cancer cell line MCF-7. BMC Pharmacol 7(1):1–19. https://doi.org/10.1186/1471-2210-7-11

    Article  CAS  Google Scholar 

  33. Bodinet C, Freudenstein J (2002) Influence of Cimicifuga racemosa on the proliferation of estrogen receptor-positive human breast cancer cells. Breast Cancer Res Treat 76(1):1–10. https://doi.org/10.1023/a:1020241509382

    Article  CAS  PubMed  Google Scholar 

  34. Kan LLY, Chan BCL, Leung PC, Wong CK (2023) Natural-product-derived adjunctive treatments to conventional therapy and their immunoregulatory activities in triple-negative breast cancer. Molecules 28(15):5804. https://doi.org/10.3390/molecules28155804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lai WY, Wei CC, Lin CH, Hang LW, Shih YH, Huang FW, Yen HR (2023) Integrative traditional Chinese medicine treatment for children with obstructive sleep apnea. J Tradit Complement Med 14(1):109–120. https://doi.org/10.1016/j.jtcme.2023.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He K, Zheng B, Kim CH, Rogers L, Zheng Q (2000) Direct analysis and identification of triterpene glycosides by LC/MS in black cohosh, Cimicifuga racemosa, and in several commercially available black cohosh products. Planta Med 66(7):635–640. https://doi.org/10.1055/s-2000-8619

    Article  CAS  PubMed  Google Scholar 

  37. Qiu SX, Dan C, Ding LS, Peng S, Chen SN, Farnsworth NR, Zhou P (2007) A triterpene glycoside from black cohosh that inhibits osteoclastogenesis by modulating RANKL and TNFα signaling pathways. Chem Biol 4(7):860–869. https://doi.org/10.1016/j.chembiol.2007.06.010

    Article  CAS  Google Scholar 

  38. Jiang B, Lyles JT, Reynertson KA, Kronenberg F, Kennelly EJ (2008) Stability evaluation of selected polyphenols and triterpene glycosides in black cohosh. J Agric Food Chem 56(20):9510–9519. https://doi.org/10.1021/jf802481w

    Article  CAS  PubMed  Google Scholar 

  39. Li W, Chen S, Fabricant D, Angerhofer CK, Fong HH, Farnsworth NR, Fitzloff JF (2002) High-performance liquid chromatographic analysis of Black Cohosh (Cimicifuga racemosa) constituents with in-line evaporative light scattering and photodiode array detection. Anal Chim Acta 471(1):61–75. https://doi.org/10.1177/1934578X07002010

    Article  CAS  Google Scholar 

  40. Jiang B, Ma C, Motley T, Kronenberg F, Kennelly EJ (2011) Phytochemical fingerprinting to thwart black cohosh adulteration: a 15 Actaea species analysis. Phytochem Anal 22(4):339–351. https://doi.org/10.1002/pca.1285

    Article  CAS  PubMed  Google Scholar 

  41. Jiang B, Kronenberg F, Balick MJ, Kennelly EJ (2006) Analysis of formononetin from black cohosh (Actaea racemosa). Phytomedicine 13(7):477–486. https://doi.org/10.1016/j.phymed.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  42. Kennelly EJ, Baggett S, Nuntanakorn P, Ososki AL, Mori SA, Duke J, Kronenberg F (2002) Analysis of thirteen populations of black cohosh for formononetin. Phytomedicine 9(5):461–467. https://doi.org/10.1078/09447110260571733

    Article  CAS  PubMed  Google Scholar 

  43. Nikolić IL, Savić-Gajić IM, Tačić AD, Savić IM (2017) Classification and biological activity of phytoestrogens: a review. Adv Technol 6(2):96–106. https://doi.org/10.5937/savteh1702096N

    Article  Google Scholar 

  44. Cruz JCFD, Quiming NS, Nicolas MG, Velarde MC, Marquez CMD High-performance liquid chromatography (HPLC) method validation for simultaneous quantitation of five phytoestrogenic flavonoids 1–21 https://doi.org/10.21203/rs.3.rs-2542015/v1

  45. Wibowo SA, Surono IS (2024) Phenolic content and antioxidant activity of formulated biscuits with banana, tempeh and moringa flours. Braz J Food Technol 27:e2023068. https://doi.org/10.1590/1981-6723.06823

    Article  Google Scholar 

  46. Al-Amier H, Eyles SJ, Craker L (2012) Evaluation of extraction methods for isolation and detection of Formononetin in black cohosh (Actaea racemosa L.). J Med Act Plants 1(1):6–12. https://doi.org/10.7275/R5CR5R84

    Article  Google Scholar 

  47. Einbond LS, Wen-Cai Y, He K, Wu HA, Cruz E, Roller M, Kronenberg F (2008) Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells. Phytomedicine 15(6–7):504–511. https://doi.org/10.1016/j.phymed.2007.09.017

    Article  CAS  PubMed  Google Scholar 

  48. Einbond LS, Shimizu M, Nuntanakorn P, Seter C, Cheng R, Jian B, Weinstein IB (2006) Actein and a fraction of black cohosh potentiate antiproliferative effects of chemotherapy agents on human breast cancer cells. Planta med 72(13):1200–1206. https://doi.org/10.1055/s-2006-947225

    Article  CAS  PubMed  Google Scholar 

  49. Satpathy S, Patra A, Hussain MD, Kazi M, Aldughaim MS, Ahirwar B (2021) A fraction of Pueraria tuberosa extract, rich in antioxidant compounds, alleviates ovariectomized-induced osteoporosis in rats and inhibits growth of breast and ovarian cancer cells. PLoS ONE 16(1):e0240068. https://doi.org/10.1371/journal.pone.0240068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Einbond LS (2009) Black cohosh: chemopreventive and anticancer potential. Complementary and alternative therapies and the aging population. Academic Press, Cambridge, pp 193–227

    Chapter  Google Scholar 

  51. Hossain R, Dey D, Biswas P, Paul P, Ahmed SZ, Khan AA, Islam MT (2022) Chlorophytum borivilianum (musli) and Cimicifuga racemosa (black cohosh). Herbs, shrubs, and trees of potential medicinal benefits. CRC Press, Boca Raton, pp 45–82

    Chapter  Google Scholar 

  52. Obafemi FA, Besong EE (2023) A review of plants with anticancer properties. J Clin Med Res 5(4):138–61. https://doi.org/10.37191/Mapsci-2582-4333-5(4)-140

    Article  Google Scholar 

  53. Zhao L, Zhang H, Li N, Chen J, Xu H, Wang Y, Liang Q (2023) Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. https://doi.org/10.1016/j.jep.2023.116306

    Article  PubMed  Google Scholar 

  54. Morris GM, Lim-Wilby M (2008) Molecular docking. Methods Mol Biol 443:365–382. https://doi.org/10.1007/978-1-59745-177-2_19

    Article  CAS  PubMed  Google Scholar 

  55. Sinha P, Yadav AK (2022) Structural, electronic, spectroscopic and molecular docking analysis of novel hetero oxetane ring compound. Comput Theor Chem 1217(4):113919. https://doi.org/10.1016/j.comptc.2022.113919

    Article  CAS  Google Scholar 

  56. Sinha P, Yadav AK (2022) Derivatives of 2-methyl tetrahydrofuran-n-carboxylic acids inhibiting novel HA3 subtype of influenza A virus hemagglutinin. J Comput Biophys Chem 21(7):783–796. https://doi.org/10.1142/S273741652250034X

    Article  CAS  Google Scholar 

  57. Sinha P, Yadav AK (2023) In silico identification and molecular dynamic simulations of derivatives of 6, 6-dimethyl-3-azabicyclo [3.1.0] hexane-2-carboxamide against main protease 3CLpro of SARS-CoV-2 viral infection. J Mol Model 29(5):130. https://doi.org/10.1007/s00894-023-05535-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sinha P, Yadav AK (2023) Theoretical study of azetidine derivative by quantum chemical methods, molecular docking and molecular dynamic simulations. ChemistrySelect 8(16):1–11. https://doi.org/10.1002/slct.202300190

    Article  CAS  Google Scholar 

  59. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Yang L (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 6:1–6. https://doi.org/10.1186/1758-2946-6-13

    Article  CAS  Google Scholar 

  60. Norinder U, Bergström CA (2006) Prediction of ADMET properties. ChemMedChem 1(9):920–937. https://doi.org/10.1002/cmdc.200600155

    Article  CAS  PubMed  Google Scholar 

  61. Leeson PD, Bento AP, Gaulton A, Hersey A, Manners EJ, Radoux CJ, Leach AR (2021) Target-based evaluation of “drug-like” properties and ligand efficiencies. J Med Chem 64(11):7210–7230. https://doi.org/10.1021/acs.jmedchem.1c00416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37(suppl2):W623–W633. https://doi.org/10.1093/nar/gkp456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(W1):W32–W38. https://doi.org/10.1093/nar/gku293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Lancet D (2010) GeneCards Version 3: the human gene integrator. Database (Oxford). https://doi.org/10.1093/database/baq020

    Article  PubMed  Google Scholar 

  66. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2015) OMIM. org: online Mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43(D1):D789–D798. https://doi.org/10.1093/nar/gku1205

    Article  CAS  PubMed  Google Scholar 

  67. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  68. Murray A (2022) The infamous VLOOKUP Function. Advanced excel formulas: unleashing brilliance with excel formulas. Apress, Berkeley, pp 329–372

    Chapter  Google Scholar 

  69. Oliveros JC (2015) Venny 2.1. 0. An interactive tool for comparing lists with Venn’s diagrams. BioinfoGP of CNB-CSIC. https://csbg.cnb.csic.es/BioinfoGP/venny.html

  70. Mering CV, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31(1):258–261. https://doi.org/10.1093/nar/gkg034

    Article  CAS  Google Scholar 

  71. Verma RN, Malik MZ, Singh GP, Subbarao N (2022) Identification of key proteins in host–pathogen interactions between Mycobacterium tuberculosis and Homo sapiens: a systematic network theoretical approach. Healthc Anal 2(10):100052. https://doi.org/10.1016/j.health.2022.100052

    Article  Google Scholar 

  72. Zhang Y, Bao Y, Zhao S, Chen J, Tang J (2015) Identifying node importance by combining betweenness centrality and katz centrality. In: 2015 International conference on cloud computing and big data (CCBD) IEEE pp 354–357. https://doi.org/10.1109/CCBD.2015.19

  73. Cook HV, Doncheva NT, Szklarczyk D, Von Mering C, Jensen LJ (2018) Viruses. STRING: a virus-host protein-protein interaction database. Viruses 10(10):519. https://doi.org/10.3390/v10100519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. BIOVIA DS (2005). Discovery Studio Client; 2.5. 0.9164. Dassault systèmes: San Diego, CA, USA. http://accelrys.com/products/collaborative-science/biovia-discovery-studio/

  75. Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34(suppl1):D302–D305. https://doi.org/10.1093/nar/gkj120

    Article  CAS  PubMed  Google Scholar 

  76. DeLano WL (2002) Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 40(1):82–92

    Google Scholar 

  77. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bauer P, Hess B, Lindahl E (2022) GROMACS 2022.1 Manual. Zenodo 1-673. https://zenodo.org/records/6451567

  79. Darden T, York D, Pedersen L (1993) Particle mesh ewald: an N•log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  80. Maier JA, Martinez C, Kasavajhala K (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bayly CI, Cieplak P, Cornell W (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280. https://doi.org/10.1021/j100142a004

    Article  CAS  Google Scholar 

  82. Mundy CJ, Siepmann JI, Klein ML (1995) Decane under shear: a molecular dynamics study using reversible NVT-SLLOD and NPT-SLLOD algorithms. J Chem Phys 103(23):10192–10200. https://doi.org/10.1063/1.469922

    Article  CAS  Google Scholar 

  83. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  84. Yousef MI, Hussien HM (2015) Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng. Food Chem Toxicol 78:17–25. https://doi.org/10.1016/j.fct.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  85. Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30(1):412–415. https://doi.org/10.1093/nar/30.1.412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gene Ontology Consortium (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32(suppl1):D258–D261. https://doi.org/10.1093/nar/gkh036

    Article  CAS  Google Scholar 

  87. Du J, Li M, Yuan Z, Guo M, Song J, Xie X, Chen Y (2016) A decision analysis model for KEGG pathway analysis. BMC Bioinform 17(1):1–12. https://doi.org/10.1186/s12859-016-1285-1

    Article  CAS  Google Scholar 

  88. Ashwell MA, Lapierre JM, Brassard C, Bresciano K, Bull C, Cornell-Kennon S, Chan TC (2012) Discovery and optimization of a series of 3-(3-Phenyl-3 H-imidazo [4, 5-b] pyridin-2-yl) pyridin-2-amines: orally bioavailable, selective, and potent ATP-independent Akt inhibitors. J Med Chem 55(11):5291–5310. https://doi.org/10.1021/jm300276x

    Article  CAS  PubMed  Google Scholar 

  89. Sheridan C (2008) Small molecule challenges dominance of TNF-[alpha] inhibitors. Nat Biotechnol 26(2):143–145

    Article  CAS  PubMed  Google Scholar 

  90. Liu Y, Duan Z, Fang J, Zhang F, Xiao J, Zhang WB (2020) Cellular synthesis and X-ray crystal structure of a designed protein heterocatenane. Angew Chem Int Ed 59(37):16122–16127. https://doi.org/10.1002/anie.202005490

    Article  CAS  Google Scholar 

  91. Hong S, Wang D, Horton JR, Zhang X, Speck SH, Blumenthal RM, Cheng X (2017) Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Res 45(5):2503–2515. https://doi.org/10.1093/nar/gkx057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, De Vos AM (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci 94(14):7192–7197. https://doi.org/10.1073/pnas.94.14.7192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanenbaum DM, Wang Y, Williams SP, Sigler PB (1998) Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci 95(11):5998–6003. https://doi.org/10.1073/pnas.95.11.5998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen L, Glover JM, Hogan PG, Rao A, Harrison SC (1998) Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392(6671):42–48. https://doi.org/10.1038/32100

    Article  CAS  PubMed  Google Scholar 

  95. Wu Q, Paul A, Su D, Mehmood S, Foo TK, Ochi T, Blundell TL (2016) Structure of BRCA1-BRCT/Abraxas complex reveals phosphorylation-dependent BRCT dimerization at DNA damage sites. Mol cell 61(3):434–448. https://doi.org/10.1016/j.molcel.2015.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, Pavletich NP (2002) BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297(5588):1837–1848. https://doi.org/10.1126/science.297.5588.1837

    Article  CAS  PubMed  Google Scholar 

  97. Hansson T, Oostenbrink C, van Gunsteren W (2002) Molecular dynamics simulations. Curr Opin Struct Biol 12(2):190–196. https://doi.org/10.1016/s0959-440x(02)00308-1

    Article  CAS  PubMed  Google Scholar 

  98. Bodinet C, Freudenstein J (2002) Influence of Cimicifuga racemosa on the proliferation of estrogen receptor-positive human breast cancer cells. Breast Cancer Res Treat 76:1–10. https://doi.org/10.1023/A:1020241509382

    Article  CAS  PubMed  Google Scholar 

  99. Park J, Shim M, Rhyu MR, Lee Y (2012) Estrogen receptor mediated effects of Cimicifuga extracts on human breast cancer cells. Pharmazie 67(11):947–950. https://doi.org/10.1691/ph.2012.2571

    Article  CAS  PubMed  Google Scholar 

  100. Ma ZC, Liu MQ, Liu GQ, Zhou ZY, Ren XL, Sun L, Wang M (2023) A Comprehensive quality evaluation of Cimicifugae rhizoma using UPLC–Q-Orbitrap-MS/MS coupled with multivariate chemometric methods. J AOAC Int 106(5):1313–1322. https://doi.org/10.1093/jaoacint/qsad064

    Article  PubMed  Google Scholar 

  101. Huyen CTT, Luyen BTT, Khan GJ, Oanh HV, Hung TM, Li HJ, Li P (2018) Chemical constituents from Cimicifuga dahurica and their anti-proliferative effects on MCF-7 breast cancer cells. Molecules 23(5):1083. https://doi.org/10.3390/molecules23051083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fang ZZ, Nian Y, Li W, Wu JJ, Ge GB, Dong PP, Yang L (2011) Cycloartane triterpenoids from Cimicifuga yunnanensis induce apoptosis of breast cancer cells (MCF7) via p53-dependent mitochondrial signaling pathway. Phytother Res 25(1):17–24. https://doi.org/10.1002/ptr.3222

    Article  CAS  PubMed  Google Scholar 

  103. Jia H, Wang X, Liu W, Qin X, Hu B, Ma Q, Lu J (2021) Cimicifuga dahurica extract inhibits the proliferation, migration and invasion of breast cancer cells MDA-MB-231 and MCF-7 in vitro and in vivo. J Ethnopharmacol 277:114057. https://doi.org/10.1016/j.jep.2021.114057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Author, Prashasti Sinha, is very thankful to the University Grant Commission (UGC), New Delhi, India, for the financial support for doctoral research work.

Funding

This work received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Authors, PS and AKY have contributed equally in the work.

Corresponding author

Correspondence to Anil Kumar Yadav.

Ethics declarations

Conflict of interests

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, P., Yadav, A.K. Unraveling the anti-breast cancer activity of Cimicifugae rhizoma using biological network pathways and molecular dynamics simulation. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10847-3

Keywords

Navigation