Skip to main content

Advertisement

Log in

Screening inhibitors against the Ef-Tu of Fusobacterium nucleatum: a docking, ADMET and PBPK assessment study

  • Original Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The oral pathogen Fusobacterium nucleatum has recently been associated with an elevated risk of colorectal cancer (CRC), endometrial metastasis, chemoresistance, inflammation, metastasis, and DNA damage, along with several other diseases. This study aimed to explore the disruption of protein machinery of F. nucleatum via inhibition of elongation factor thermo unstable (Ef-Tu) protein, through natural products. No study on Ef-Tu inhibition by natural products or in Fusobacterium spp. exists till todate. Ef-Tu is an abundant specialized drug target in bacteria that varies from human Ef-Tu. Elfamycins target Ef-Tu and hence, Enacyloxin IIa was used to generate pharmacophore for virtual screening of three natural product libraries, Natural Product Activity and Species Source (NPASS) (n = 30000 molecules), Tibetan medicinal plant database (n = 54 molecules) and African medicinal plant database (n > 6000 molecules). Peptaibol Septocylindrin B (NPC141050), Hirtusneanoside, and ZINC95486259 were prioritized from these libraries as potential therapeutic candidates. ADMET profiling was done for safety assessment, physiological-based pharmacokinetic modeling in human and mouse for getting insight into drug interaction with body tissues and molecular dynamics was used to assess stability of the best hit NPC141050 (Septocylindrin B). Based on the promising results, we propose further in vitro, in vivo and pharmacokinetic testing on the lead Septocylindrin B, for possible translation into therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data used or generated in this study are provided as accession number or relevant information as tables or supplementary data with the manuscript.

References

  1. Han YW, Shi W, Huang GT-J, Kinder Haake S, Park N-H, Kuramitsu H, Genco RJ (2000) Interactions between periodontal bacteria and human oral epithelial cells: fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68(6):3140–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li Y-Y, Ge Q-X, Cao J, Zhou Y-J, Du Y-L, Shen B, Wan Y-JY, Nie Y-Q (2016) Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol 22(11):3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alturki NA, Mashraqi MM, Jalal K, Khan K, Basharat Z, Alzamami A (2022) Therapeutic target identification and inhibitor screening against riboflavin synthase of colorectal cancer associated fusobacterium nucleatum. Cancers 14(24):6260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sbragi PAdOF (2022) The role of intestinal and vaginal dysbiosis in endometrial cancer: an integrative review. Int J Nutrol. https://doi.org/10.54448/IJN22305

    Article  Google Scholar 

  5. Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, Yajuk O, Isaacson B, Abed J, Maalouf N (2020) Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun 11(1):3259

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boehm ET, Thon C, Kupcinskas J, Steponaitiene R, Skieceviciene J, Canbay A, Malfertheiner P, Link A (2020) Fusobacterium nucleatum is associated with worse prognosis in Lauren’s diffuse type gastric cancer patients. Sci Rep 10(1):16240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swidsinski A, Dörffel Y, Loening-Baucke V, Theissig F, Rückert JC, Ismail M, Rau WA, Gaschler D, Weizenegger M, Kühn S (2011) Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60(1):34–40

    Article  PubMed  Google Scholar 

  8. Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, DeVinney R, Lynch T, Allen-Vercoe E (2011) Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis 17(9):1971–1978

    Article  PubMed  Google Scholar 

  9. Cao P, Chen Y, Guo X, Chen Y, Su W, Zhan N, Dong W (2020) Fusobacterium nucleatum activates endoplasmic reticulum stress to promote Crohn’s disease development via the upregulation of CARD3 expression. Front Pharmacol 11:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu H, Hong XL, Sun TT, Huang XW, Wang JL, Xiong H (2020) Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis 21(7):385–398

    Article  CAS  PubMed  Google Scholar 

  11. Shahoumi LA, Saleh MHA, Meghil MM (2023) Virulence factors of the periodontal pathogens: tools to evade the host immune response and promote carcinogenesis. Microorganisms. https://doi.org/10.3390/microorganisms11010115

    Article  PubMed  PubMed Central  Google Scholar 

  12. El-Awady A, de Sousa RM, Meghil MM, Rajendran M, Elashiry M, Stadler AF, Foz AM, Susin C, Romito GA, Arce RM (2019) Polymicrobial synergy within oral biofilm promotes invasion of dendritic cells and survival of consortia members. npj Biofilms Microbiomes 5(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  13. Farrugia C, Stafford GP, Gains AF, Cutts AR, Murdoch C (2022) Fusobacterium nucleatum mediates endothelial damage and increased permeability following single species and polymicrobial infection. J Periodontol 93(9):1421–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bosch L, Kraal B, Van der Meide P, Duisterwinkel F, Van Noort JJ (1983) The elongation factor EF-Tu and its two encoding genes. Progress Nucleic Acid Res Molecul Biol 30:91–126

    Article  CAS  Google Scholar 

  15. Barel M, Hovanessian AG, Meibom K, Briand JP, Dupuis M, Charbit A (2008) A novel receptor - ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol 8:145. https://doi.org/10.1186/1471-2180-8-145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harvey KL, Jarocki VM, Charles IG, Djordjevic SP (2019) The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front Microbiol 10:2351

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marcos CM, de Oliveira HC, da Silva JF, Assato PA, Yamazaki DS, da Silva RA, Santos CT, Santos-Filho NA, Portuondo DL, Mendes-Giannini MJ, Fusco-Almeida AM (2016) Identification and characterisation of elongation factor Tu, a novel protein involved in Paracoccidioides brasiliensis-host interaction. FEMS Yeast Res. https://doi.org/10.1093/femsyr/fow079

    Article  PubMed  Google Scholar 

  18. Thofte O, Su YC, Brant M, Littorin N, Duell BL, Alvarado V, Jalalvand F, Riesbeck K (2018) EF-Tu from non-typeable haemophilus influenzae is an immunogenic surface-exposed protein targeted by bactericidal antibodies. Front Immunol 9:2910. https://doi.org/10.3389/fimmu.2018.02910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gross S, Nguyen F, Bierschenk M, Sohmen D, Menzel T, Antes I, Wilson DN, Bach T (2013) Amythiamicin D and related thiopeptides as inhibitors of the bacterial elongation factor EF-Tu: modification of the amino acid at carbon atom C2 of ring C dramatically influences activity. ChemMedChem 8(12):1954–1962

    Article  CAS  PubMed  Google Scholar 

  20. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discovery 14(2):111–129. https://doi.org/10.1038/nrd4510

    Article  CAS  PubMed  Google Scholar 

  21. Rui-Feng H, Xiao-Bo S (2017) Design of new traditional Chinese medicine herbal formulae for treatment of type 2 diabetes mellitus based on network pharmacology. Chin J Nat Med 15(6):436–441

    Google Scholar 

  22. Memar MY, Raei P, Alizadeh N, Akbari AM, Kafil HS (2017) Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Rev Med Microbiol 28(2):63–68

    Article  Google Scholar 

  23. Silva LN, Zimmer KR, Macedo AJ, Trentin DS (2016) Plant natural products targeting bacterial virulence factors. Chem Rev 116(16):9162–9236. https://doi.org/10.1021/acs.chemrev.6b00184

    Article  CAS  PubMed  Google Scholar 

  24. Offutt TL, Swift RV, Amaro RE (2016) Enhancing virtual screening performance of protein kinases with molecular dynamics simulations. J Chem Inf Model 56(10):1923–1935. https://doi.org/10.1021/acs.jcim.6b00261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Silvestri IP, Colbon PJJ (2021) The growing importance of chirality in 3D chemical space exploration and modern drug discovery approaches for Hit-ID: topical innovations. ACS Med Chem Lett 12(8):1220–1229. https://doi.org/10.1021/acsmedchemlett.1c00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guariento S, Bruno O, Fossa P, Cichero E (2016) New insights into PDE4B inhibitor selectivity: CoMFA analyses and molecular docking studies. Mol Divers 20:77–92

    Article  CAS  PubMed  Google Scholar 

  27. Kadioglu O, Saeed M, Greten HJ, Efferth T (2021) Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med 133:104359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiu Z-c, Tang X-y, Wu Q-c, Tang Z-l, Wong M-s, Chen J-x, Yao X-s, Dai Y (2021) A new strategy for discovering effective substances and mechanisms of traditional Chinese medicine based on standardized drug containing plasma and the absorbed ingredients composition, a case study of Xian-Ling-Gu-Bao capsules. J Ethnopharmacol 279:114396

    Article  CAS  PubMed  Google Scholar 

  29. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM, Dickerman A, Dietrich EM, Kenyon RW (2023) Introducing the bacterial and viral bioinformatics resource center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 51(D1):D678–D689

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, Zhang R, Zhu J, Ren Y, Tan Y (2020) Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 48(D1):D1031–D1041

    CAS  PubMed  Google Scholar 

  31. Cramer P (2021) AlphaFold2 and the future of structural biology. Nat Struct Molecul Biol 28(9):704–705

    Article  CAS  Google Scholar 

  32. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19(6):679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444

    Article  CAS  PubMed  Google Scholar 

  34. Varadi M, Bordin N, Orengo C, Velankar S (2023) The opportunities and challenges posed by the new generation of deep learning-based protein structure predictors. Curr Opin Struct Biol 79:102543

    Article  CAS  PubMed  Google Scholar 

  35. Mariani V, Biasini M, Barbato A, Schwede T (2013) lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29(21):2722–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeng X, Zhang P, He W, Qin C, Chen S, Tao L, Wang Y, Tan Y, Gao D, Wang B (2018) NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res 46(D1):D1217–D1222

    Article  CAS  PubMed  Google Scholar 

  37. Ntie-Kang F, Zofou D, Babiaka SB, Meudom R, Scharfe M, Lifongo LL, Mbah JA, Mbaze LM, Sippl W, Efange SM (2013) AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLoS ONE 8(10):e78085

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basharat Z, Khan K, Jalal K, Alnasser SM, Majeed S, Zehra M (2022) Inferring therapeutic targets in candida albicans and possible inhibition through natural products: a binding and physiological based pharmacokinetics snapshot. Life 12(11):1743

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prezioso SM, Brown NE, Goldberg JB (2017) Elfamycins: Inhibitors of elongation factor-Tu. Mol Microbiol 106(1):22–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Basharat Z, Akhtar U, Khan K, Alotaibi G, Jalal K, Abbas MN, Hayat A, Ahmad D, Hassan SS (2022) Differential analysis of Orientia tsutsugamushi genomes for therapeutic target identification and possible intervention through natural product inhibitor screening. Comput Biol Med 141:105165

    Article  CAS  PubMed  Google Scholar 

  41. Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR (2015) An interbacterial NAD (P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell Rep 163(3):607–619

    CAS  Google Scholar 

  42. Basharat Z, Jahanzaib M, Rahman N (2021) Therapeutic target identification via differential genome analysis of antibiotic resistant Shigella sonnei and inhibitor evaluation against a selected drug target. Infect Genet Evolut 94:105004

    Article  CAS  Google Scholar 

  43. Wang Z, Pan H, Sun H, Kang Y, Liu H, Cao D, Hou T (2022) fastDRH: a webserver to predict and analyze protein–ligand complexes based on molecular docking and MM/PB (GB) SA computation. Brief Bioinf 23(5):bbac201

    Article  Google Scholar 

  44. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jalal K, Khan K, Hayat A, Alnasser SM, Meshal A, Basharat Z (2023) Pan-genomics of Escherichia albertii for antibiotic resistance profiling in different genome fractions and natural product mediated intervention: in Silico approach. Life 13(2):541

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Basharat Z, Meshal A (2023) Pan-genome mediated therapeutic target mining in Kingella kingae and inhibition assessment using traditional Chinese medicinal compounds: an informatics approach. J Biomolecul Struct Dyn. https://doi.org/10.1080/07391102.2023.2208221

    Article  Google Scholar 

  47. Poirier A, Cascais A-C, Funk C, Lavé T (2009) Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Pharmacodyn 36:585–611

    Article  CAS  PubMed  Google Scholar 

  48. Lennernäs H, Ahrenstedt Ö, Hällgren R, Knutson L, Ryde M, Paalzow LK (1992) Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm Res 9:1243–1251

    Article  PubMed  Google Scholar 

  49. Gobeau N, Stringer R, De Buck S, Tuntland T, Faller BJPR (2016) Evaluation of the GastroPlus™ advanced compartmental and transit (acat) model in early discovery. Pharmaceut Res 33:2126–2139

    Article  CAS  Google Scholar 

  50. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519

    Article  CAS  PubMed  Google Scholar 

  51. Muhammad I, Rahman N, Niaz S, Basharat Z, Rastrelli L, Jayanthi S, Efferth T, Khan H (2021) Screening of potent phytochemical inhibitors against SARS-CoV-2 protease and its two Asian mutants. Comput Biol Med 133:104362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22(21):2695–2696

    Article  CAS  PubMed  Google Scholar 

  53. Jamei M, Dickinson GL, Rostami-Hodjegan A (2009) A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’vs ‘top-down’recognition of covariates. Drug Metabolism Pharmacokinet 24(1):53–75

    Article  CAS  Google Scholar 

  54. Roberts G (2000) Fusobacterial infections: an underestimated threat. Br J Biomed Sci 57(2):156

    CAS  PubMed  Google Scholar 

  55. Tb S, Xy F, Cx W, Yq C, Wb Li, Wm Z (2020) Rare occurrence of acute hematogenous periprosthetic joint infection due to Fusobacterium nucleatum in the background of a dental procedure: a case report. Orthop Surg 12(6):2026–2030

    Article  Google Scholar 

  56. Meng Q, Gao Q, Mehrazarin S, Tangwanichgapong K, Wang Y, Huang Y, Pan Y, Robinson S, Liu Z, Zangiabadi A (2021) Fusobacterium nucleatum secretes amyloid-like FadA to enhance pathogenicity. EMBO Rep 22(7):e52891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen Y, Huang Z, Tang Z, Huang Y, Huang M, Liu H, Ziebolz D, Schmalz G, Jia B, Zhao J (2022) More than just a periodontal pathogen–the research progress on Fusobacterium nucleatum. Front Cell Infect Microbiol 12:64

    Google Scholar 

  58. Alon-Maimon T, Mandelboim O, Bachrach G (2022) Fusobacterium nucleatum and cancer. Periodontol 89(1):166–180

    Article  Google Scholar 

  59. Bella Z, Erdelyi E, Szalenko-Tőkés Á, Kiricsi Á, Gaál V, Benedek P, Rovó L, Nagy E (2022) Peritonsillar abscess: an 8-year retrospective, culture based evaluation of 208 cases. J Med Microbiol 71(9):001576

    Article  CAS  Google Scholar 

  60. Zhu L, Hao Y, Li W, Shi B, Dong H, Gao P (2022) Significance of pleural effusion detected by metagenomic next-generation sequencing in the diagnosis of aspiration pneumonia. Front Cell Infect Microbiol 12:1887

    Article  Google Scholar 

  61. Chaovarin C, Polpong P, Sungkhachat O (2021) Fusobacterium nucleatum and brain abscess: case report and literature review. Interdiscip Neurosurg 24:101062

    Article  Google Scholar 

  62. Fan Z, Tang P, Li C, Yang Q, Xu Y, Su C, Li L (2023) Fusobacterium nucleatum and its associated systemic diseases: epidemiologic studies and possible mechanisms. J Oral Microbiol 15(1):2145729. https://doi.org/10.1080/20002297.2022.2145729

    Article  CAS  PubMed  Google Scholar 

  63. Han YW (2015) Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 23:141–147

    Article  CAS  PubMed  Google Scholar 

  64. Yang M, Dong P-T, Cen L, Shi W, He X, Li J (2023) Targeting Fusobacterium nucleatum through chemical modifications of host-derived transfer RNA fragments. ISME J 17(6):880–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. LaCourse KD, Zepeda-Rivera M, Kempchinsky AG, Baryiames A, Minot SS, Johnston CD, Bullman S (2022) The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota. Cell Rep 41(7):111625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ben Lagha A, Haas B, Grenier D (2017) Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci Rep 7(1):44815

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar A, Saranathan R, Prashanth K, Tiwary BK, Krishna R (2017) Inhibition of the MurA enzyme in Fusobacterium nucleatum by potential inhibitors identified through computational and in vitro approaches. Mol BioSyst 13(5):939–954

    Article  CAS  PubMed  Google Scholar 

  68. Chew J, Zilm PS, Fuss JM, Gully NJ (2012) A proteomic investigation of Fusobacterium nucleatum alkaline-induced biofilms. BMC Microbiol 12:189. https://doi.org/10.1186/1471-2180-12-189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang D, Luo B, Shan W, Hao M, Sun X, Ge R (2013) The effects of EF-Ts and bismuth on EF-Tu in Helicobacter pylori: implications for an elegant timing for the introduction of EF-Ts in the elongation and EF-Tu as a potential drug target. Metallomics 5(7):888–895

    Article  CAS  PubMed  Google Scholar 

  70. Yu Y, Wang H, Wang J, Feng Z, Wu M, Liu B, Xin J, Xiong Q, Liu M, Shao G (2018) Elongation factor thermo unstable (EF-Tu) moonlights as an adhesin on the surface of Mycoplasma hyopneumoniae by binding to fibronectin. Front Microbiol 9:974

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yu Y, Wang J, Han R, Wang L, Zhang L, Zhang AY, Xin J, Li S, Zeng Y, Shao G (2020) Mycoplasma hyopneumoniae evades complement activation by binding to factor H via elongation factor thermo unstable (EF-Tu). Virulence 11(1):1059–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiu K-H, Wang L-H, Tsai T-T, Lei H-Y, Liao P-C (2017) Secretomic analysis of host–pathogen interactions reveals that elongation factor-Tu is a potential adherence factor of Helicobacter pylori during pathogenesis. J Proteome Res 16(1):264–273

    Article  CAS  PubMed  Google Scholar 

  73. Zhan B, Gao Y, Gao W, Li Y, Li Z, Qi Q, Lan X, Shen H, Gan J, Zhao G (2022) Structural insights of the elongation factor EF-Tu complexes in protein translation of Mycobacterium tuberculosis. Commun Biol 5(1):1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Domogatsky S, Vlasik T, Seryakova T, Ovchinnikov L, Spirin A (1978) Difference in RNA-binding ability between eukaryotic and prokaryotic elongation factors of translation. FEBS Lett 96(1):207–210

    Article  CAS  PubMed  Google Scholar 

  75. Berisio R, Ruggiero A, Vitagliano L (2010) Elongation factors EFIA and EF-Tu: their role in translation and beyond. Isr J Chem 50(1):71–79

    Article  CAS  Google Scholar 

  76. Rodnina MV, Gromadski KB, Kothe U, Wieden H-J (2005) Recognition and selection of tRNA in translation. FEBS Lett 579(4):938–942

    Article  CAS  PubMed  Google Scholar 

  77. Parmeggiani A, Nissen P (2006) Elongation factor Tu-targeted antibiotics: four different structures, two mechanisms of action. FEBS Lett 580(19):4576–4581

    Article  CAS  PubMed  Google Scholar 

  78. Fabbretti A, Giuliodori AM, Brandi L (2014) Inhibitors of bacterial elongation factor EF-Tu Targets. Mechan Res. https://doi.org/10.1002/9783527659685

    Article  Google Scholar 

  79. Heffron SE, Jurnak F (2000) Structure of an EF-Tu complex with a thiazolyl peptide antibiotic determined at 2.35 Å resolution: atomic basis for GE2270A inhibition of EF-Tu. Biochemistry 39(1):37–45

    Article  CAS  PubMed  Google Scholar 

  80. Sosio M, Amati G, Cappellano C, Sarubbi E, Monti F, Donadio S (1996) An elongation factor Tu (EF-Tu) resistant to the EF-Tu inhibitor GE2270 in the producing organism Planobispora rosea. Mol Microbiol 22(1):43–51

    Article  CAS  PubMed  Google Scholar 

  81. Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK (2021) Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 14(12):1750–1766

    Article  PubMed  Google Scholar 

  82. Labes A (2023) Marine resources offer new compounds and strategies for the treatment of skin and soft tissue infections. Mar Drugs 21(7):387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Barbosa F, Pinto E, Kijjoa A, Pinto M, Sousa E (2020) Targeting antimicrobial drug resistance with marine natural products. Int J Antimicrob Agents 56(1):106005

    Article  CAS  PubMed  Google Scholar 

  84. Kar S, Leszczynski J (2023) Current trends in computational modeling for drug discovery. Springer, Berlin

    Book  Google Scholar 

  85. Basharat Z, Alghamdi YS, Mashraqi MM, Makkawi M, Alasmari S, Alshamrani S (2023) Subtractive sequence-mediated therapeutic targets from the conserved gene clusters of Campylobacter hyointestinalis and computational inhibition assessment. J Biomolecul Struct Dyn. https://doi.org/10.1080/07391102.2023.2208229

    Article  Google Scholar 

  86. Parmeggiani A, Krab IM, Watanabe T, Nielsen RC, Dahlberg C, Nyborg J, Nissen P (2006) Enacyloxin IIa pinpoints a binding pocket of elongation factor Tu for development of novel antibiotics. J Biol Chem 281(5):2893–2900

    Article  CAS  PubMed  Google Scholar 

  87. Najmi A, Javed SA, Al Bratty M, Alhazmi HA (2022) Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 27(2):349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Summers MY, Kong F, Feng X, Siegel MM, Janso JE, Graziani EI, Carter GT (2007) Septocylindrins A and B: Peptaibols Produced by the Terrestrial Fungus S eptocylindrium sp LL-Z1518. J Nat Prod 70(3):391–396

    Article  CAS  PubMed  Google Scholar 

  89. Nelissen J, Nuyts K, De Zotti M, Lavigne R, Lamberigts C, De Borggraeve WM (2012) Total synthesis of Septocylindrin B and C-terminus modified analogues. PLoS ONE 7(12):e51708

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morbiato L, Haneen DS, Formaggio F, De Zotti M (2023) Total synthesis of the natural, medium-length, peptaibol pentadecaibin and study of the chemical features responsible for its membrane activity. J Pept Sci. https://doi.org/10.1002/psc.3479

    Article  PubMed  Google Scholar 

  91. Kim C-K, Krumpe LR, Smith E, Henrich CJ, Brownell I, Wendt KL, Cichewicz RH, O’Keefe BR, Gustafson KR (2021) Roseabol A, a new peptaibol from the fungus Clonostachys rosea. Molecules 26(12):3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramachander Turaga V (2020) Peptaibols: antimicrobial peptides from fungi. In: Singh J, Meshram V, Gupta M (eds) Bioactive natural products in drug discovery. Springer, Singapore, pp 713–730

    Google Scholar 

  93. Gavryushina I, Georgieva M, Kuvarina A, Sadykova V (2021) Peptaibols as potential antifungal and anticancer antibiotics: current and foreseeable development. Appl Biochem Microbiol 57:556–563

    Article  CAS  Google Scholar 

  94. Rahimi Tamandegani P, Marik T, Zafari D, Balázs D, Vágvölgyi C, Szekeres A, Kredics L (2020) Changes in peptaibol production of Trichoderma species during in vitro antagonistic interactions with fungal plant pathogens. Biomolecules 10(5):730

    Article  PubMed Central  Google Scholar 

  95. Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A (2022) Antimicrobial mechanisms of biomaterials: from macro to nano. Biomater Sci 10(16):4392–4423

    Article  CAS  PubMed  Google Scholar 

  96. Zhao P, Xue Y, Li X, Li J, Zhao Z, Quan C, Gao W, Zu X, Bai X, Feng S (2019) Fungi-derived lipopeptide antibiotics developed since 2000. Peptides 113:52–65

    Article  CAS  PubMed  Google Scholar 

  97. Rezanka T, Sigler K (2007) Hirtusneanoside, an unsymmetrical dimeric tetrahydroxanthone from the lichen Usnea hirta. J Nat Prod 70(9):1487–1491

    Article  CAS  PubMed  Google Scholar 

  98. Sepahvand A, Studzińska-Sroka E, Ramak P, Karimian V (2021) Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. J Ethnopharmacol 268:113656

    Article  CAS  PubMed  Google Scholar 

  99. Sun J, Gu W, Yang H, Tang W (2021) Enantioselective total synthesis of parnafungin A1 and 10a-epi-hirtusneanine. Chem Sci 12(30):10313–10320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cansaran D, Kahya D, Yurdakulol E, Atakol O (2006) Identification and quantitation of usnic acid from the lichen Usnea species of Anatolia and antimicrobial activity. Zeitschrift für Naturforschung C 61(11–12):773–776

    Article  CAS  Google Scholar 

  101. Dobrescu D, Tănăsescu M, Mezdrea A, Ivan C, Ordosch E, Neagoe F, Rizeanu A, Trifu L, Enescu V (1993) Contributions to the complex study of some lichens-Usnea genus. Pharmacological studies on Usnea barbata and Usnea hirta species. Roman J Physiol Physiol Sci 30(1–2):101–107

    CAS  Google Scholar 

  102. Lüpfert C, Reichel A (2005) Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem Biodivers 2(11):1462–1486

    Article  PubMed  Google Scholar 

  103. Lucas AJ, Sproston JL, Barton P, Riley RJ (2019) Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin Drug Discov 14(12):1313–1327

    Article  CAS  PubMed  Google Scholar 

  104. Pérez-Moreno G, Cantizani J, Sánchez-Carrasco P, Ruiz-Pérez LM, Martín J, El Aouad N, Pérez-Victoria I, Tormo JR, González-Menendez V, González I (2016) Discovery of new compounds active against Plasmodium falciparum by high throughput screening of microbial natural products. PLoS ONE 11(1):e0145812

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Shaqra University for funding this research through project number SU-ANN-202211.

Funding

This research was funded by the Deanship of Scientific Research at Shaqra University Research Support Program under the code SU-ANN-202211.

Author information

Authors and Affiliations

Authors

Contributions

AA, ZB, and NAA conceived and designed the study; ZB performed the experiments; AA, MMM validated the findings. ZB and KK wrote the original draft; MMM, NAA and AA wrote, reviewed, and edited the manuscript; AA, MMM and ZB provided software, resource support, and validated findings; MMM and ZB supervised the study; ZB and AA operated funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zarrin Basharat or Mutaib M. Mashraqi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors approved manuscript for publication in current form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 6289 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzamami, A., Alturki, N.A., Khan, K. et al. Screening inhibitors against the Ef-Tu of Fusobacterium nucleatum: a docking, ADMET and PBPK assessment study. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10815-x

Keywords

Navigation