Skip to main content
Log in

Synthesis, modifications, and applications of iron-based nanoparticles

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Ling D, Hackett MJ, Hyeon T (2014) Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 9(4):457–477

    Article  CAS  Google Scholar 

  2. Zheng J, Stevenson MS, Hikida RS, Van Patten PG (2002) Influence of pH on dendrimer-protected nanoparticles. J Phys Chem B 106(6):1252–1255

    Article  CAS  Google Scholar 

  3. Bharathan VA, Yadukiran V, Lazar A, Singh AP, Vinod CP (2016) Synthesis of Au@Ni bimetallic core shell nanoparticle and nanochains in soyabean oil and their catalytic hydrogenation reactions. ChemistrySelect 2:140–146

    Article  Google Scholar 

  4. Karimi-Maleh H, Karimi F, Malekmohammadi S et al (2020) An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J Mol Liq 310:113185

    Article  CAS  Google Scholar 

  5. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  CAS  PubMed  Google Scholar 

  6. Jiao T, Zhao H, Zhou J et al (2015) Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments. ACS Sustain Chem Eng 3(12):3130–3139

    Article  CAS  Google Scholar 

  7. Gawande MB, Branco PS (2011) An efficient and expeditious fmoc protection of amines and amino acids in aqueous media. Green Chem 13(12):3355–3359

    Article  CAS  Google Scholar 

  8. Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348

    Article  CAS  PubMed  Google Scholar 

  9. Shelke SN, Bankar SR, Mahske GR, Kadam SS, Murade DK, Bhorkade SB, Rathi AK, Bundaleski N, Teodoro OMND, Zboril R et al (2014) Iron oxide-supported copper oxide nanoparticles(nanocat-Fe-CuO): magnetically recyclable catalysts for the synthesis of pyrazole derivatives,4-methoxyaniline and ullmann-type condensation reactions. ACS Sustain Chem Eng 2:1699–1706

    Article  CAS  Google Scholar 

  10. Gawande MB, Shelke SN, Branco PS, Rathi A, Pandey RK (2012) Mixed metal MgO–ZrO2 nanoparticle-catalyzed O-tert-Boc protection of alcohols and phenols under solvent-free conditions. Appl Organomet Chem 26:395–400

    Article  CAS  Google Scholar 

  11. Gawande MB, Pandey RK, Jayaram RV (2012) Role of mixed metal oxides in catalysis science-versatile applications in organic synthesis. Catal Commun 2:1113–1125

    CAS  Google Scholar 

  12. Sonavane SU, Gawande MB, Deshpande SS, Venkataraman A, Jayaram RV (2007) Chemoselective transfer hydrogenation reactions over nanosized -Fe2O3 catalyst prepared by novel combustion route. Catal Commun 8:1803–1806

    Article  CAS  Google Scholar 

  13. Gade VB, Rathi AK, Bhalekar SB, Tucek J, Tomanec O, Varma RS, Zboril R, Shelke SN, Gawande MB (2017) Iron-oxide-supported UltrasmallZnO nanoparticles: applications for trans esterification, amidation and O-acylation reactions. ACS Sustain Chem Eng 5:3314–3320

    Article  CAS  Google Scholar 

  14. Gawande MB, Rathi A, Nogueira ID, Ghumman CAA, Bundaleski N, Teodoro OMND, Branco PS (2012) A recyclable ferrite-Co magnetic nanocatalyst for the oxidation of alcohols to carbonyl compounds. Chem Plus Chem 77:865–871

    CAS  Google Scholar 

  15. Gawande MB, Branco PS, Nogueira ID, Ghumman CAA, Bundaleski N, Santos A, Teodoro OMND, Luque R (2013) Catalytic applications of a versatile magnetically separable Fe–Mo(nanocat-Fe–Mo) nanocatalyst. Green Chem 15:682–689

    Article  CAS  Google Scholar 

  16. Gawande MB, Rathi AK, Nogueira ID, Varma RS, Branco PS (2013) Magnetitesupported sulfonic acid: a retrievable nanocatalyst for the ritter reaction and multicomponent reactions. Green Chem 15:1895–1899

    Article  CAS  Google Scholar 

  17. Fang Z, Xu W, Huang T, Li M, Wang W, Liu Y, Mao C, Meng F, Wang M, Cheng M et al (2013) Facile scalable synthesis of Co3O4/carbon nanotube hybrids assuperior anode materials for lithium-ion batteries. Mater Res Bull 48:4419–4423

    Article  CAS  Google Scholar 

  18. Srivastava M, Singh J, Yashpal M, Gupta DK, Mishra RK, Tripathi S, Ojha AK (2012) Synthesis of superparamagnetic bare Fe3O4 nanostructures and core/shell (Fe3O4/alginate)nanocomposites. Carbohydr Polym 89:821–829

    Article  CAS  PubMed  Google Scholar 

  19. Tripathy A, Nine MJ, Silva FS (2021) Biosensing platform on ferrite magnetic nanoparticles: synthesis, functionalization, mechanism and applications. Adv Colloid Interf Sci 290:102380

    Article  CAS  Google Scholar 

  20. Singh P, Singh KR, Verma R, Singh J, Singh RP (2022) Efficient electro-optical characteristics of bioinspired iron oxide nanoparticles synthesized by Terminalia chebula dried seed extract. Mater Lett 307:131053

    Article  CAS  Google Scholar 

  21. Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC (2000) The role of catalysis in the design, development and implementation of green chemistry. Catal Today 55:11–22

    Article  CAS  Google Scholar 

  22. Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126

    Article  CAS  PubMed  Google Scholar 

  23. Davis E, Ide MS, Davis RJ (2013) Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem 15:17–45

    Article  CAS  Google Scholar 

  24. Kunde SP, Kanade KG, Karale BK, Akolkar HN, Randhavane PV, Shinde ST (2017) Synthesis and characterization of nanostructured Cu–ZnO: an efficient catalyst for the preparation of(E)-3 Styrylchromones. Arab J Chem 12(8):5212–5222

    Article  Google Scholar 

  25. Vekariya RH, Patel HD (2015) Alumina sulfuric acid (ASA), tungstate sulfuric acid (TSA), molybdate sulfuric acid (MSA) and xanthan sulfuric acid (XSA) as solid and heterogeneous catalysts in green organic synthesis: a review. ARKIVOC. https://doi.org/10.3998/ark.5550190.p008.894

    Article  Google Scholar 

  26. Vekariya RH, Patel HD (2015) Cellulose sulfuric acid (CSA) and starch sulfuric acid (SSA) as solid and heterogeneous catalysts in green organic synthesis: recent advances. ARKIVOC. https://doi.org/10.3998/ark.5550190.p008.975

    Article  Google Scholar 

  27. Vekariya RH, Patel KD, Patel HD (2014) A green and one-pot synthesis of a library of 1,4-dihydropyrano[2,3-c]-pyrazole-5-carbonitrile derivatives using thiourea dioxide (TUD) as an efficient and reusable organocatalyst. Res Chem Inter 45:1031

    Google Scholar 

  28. Mojtahedi MM, Niknejad N, Veisi H (2013) A mild and green method for the N-BOC protection of amines without assistant of catalyst under solvent-free conditions. Lett Org Chem 10:121–125

    Article  CAS  Google Scholar 

  29. Anastas PT, Warner JC (1998) Green chemistry theory and practice. Oxford University Press, Oxford, p 135

    Google Scholar 

  30. Matlack AS (2001) Introduction to green chemistry. Marcel Dekker, New York

    Google Scholar 

  31. Nayak V, Singh KRB, Verma R, Pandey MD, Singh J, Singh RP (2022) Recent advancements of biogenic iron nanoparticles in cancer theranostics. Mater Lett 313:131769

    Article  CAS  Google Scholar 

  32. Clark JH, Macquarrie DJ (2002) Handbook of green chemistry and technology. Blackwell Publishing, Abingdon

    Book  Google Scholar 

  33. Lancaster M (2002) Green chemistry: an introductory text. RSC, Cambridge

    Google Scholar 

  34. Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) science and politics of change. Science 297:807

    Article  CAS  PubMed  Google Scholar 

  35. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437

    Article  CAS  PubMed  Google Scholar 

  36. Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun. https://doi.org/10.1039/b803584a

    Article  Google Scholar 

  37. Walsh PT, Li H, de Parrodi CA (2007) A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem Rev 107:2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nasir Baig RB, Varma RS (2012) Stereo-and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β-amino triazoles. Chem Commun 48:5853

    Article  Google Scholar 

  39. Nasir Baig RB, Varma RS (2012) Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev 41:1559

    Article  Google Scholar 

  40. Gawande SB, Brancoa PS, Varma RS (2013) Nano-magnetite Fe3O4 as a support for recyclable catalysts in the development of sustainable methodologies. Chemsuschem 42:3371–3393

    CAS  Google Scholar 

  41. Azizi N, Mirmashhori B, Saidi MR (2007) Lithium perchlorate promoted highly regioselective ring opening of epoxides under solvent-free conditions. Catal Commun 8(12):2198–2203

    Article  CAS  Google Scholar 

  42. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3063

    Article  CAS  PubMed  Google Scholar 

  43. Azizi K, Heydari A (2014) Vitamin B1 supported on silica-encapsulated γ-Fe2O3 nanoparticles: design, characterization and application as a greener biocatalyst for highly. RSC Adv 4:88128816

    Article  Google Scholar 

  44. Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428

    Article  CAS  Google Scholar 

  45. Zhu Y, Stubbs LP, Ho F, Liu R, Ship CP, Maguire JA, Hosmane NS (2010) Magnetic nanocomposites: a new perspective in catalysis. ChemCatChem 2:365

    Article  CAS  Google Scholar 

  46. Baig RBN, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49:752

    Article  CAS  Google Scholar 

  47. Petrov KD, Chubarov AS (2022) Magnetite nanoparticles for biomedical applications. Encyclopedia 2:1811–1828

    Article  Google Scholar 

  48. Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification coord. Chem Rev 315:90–111

    CAS  Google Scholar 

  49. Soufi A, Hajjaoui H, Elmoubarki R, Abdennouri M, Qourzal S, Barka N (2021) Noureddine BARKA, Spinel ferrites nanoparticles: synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants. Appl Surf Sci Adv 6:100145

    Article  Google Scholar 

  50. Wallyn J, Anton N, Vandamme TF (2019) Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications—A review. Pharmaceutics 11(11):601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196

    Article  CAS  Google Scholar 

  52. McNamara K, Tofail SAM (2015) Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys 17(42):27981–27995

    Article  CAS  PubMed  Google Scholar 

  53. Comanescu C (2023) Recent advances in surface functionalization of magnetic nanoparticles. Coatings 13(10):1772

    Article  CAS  Google Scholar 

  54. Hofmann-amtenbrink M, Hofmann H, Pully M et al (2009) Superparamagnetic nanoparticles for biomedical applications. Nano Mat Bio App 661:119–149

    Google Scholar 

  55. Dobson J (2006) Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Ther 13:283–287

    Article  CAS  PubMed  Google Scholar 

  56. Hütten A, Sudfeld D, Ennen I et al (2004) New magnetic nanoparticles for biotechnology. J Biotechnol 112:47–63

    Article  PubMed  Google Scholar 

  57. Kolosnjaj-Tabi J, Javed Y, Lartigue L et al (2015) The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9:7925–7939

    Article  CAS  PubMed  Google Scholar 

  58. Jay Singh M, Srivastava JD, Dutta PK (2011) Preparation and properties of hybrid monodispersed magnetic α-Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications. Int J Biol Macromol 48:170–176

    Article  PubMed  Google Scholar 

  59. Theumer A, Gräfe C, Bähring F, Bergemann C, Hochhaus A, Clement JH (2015) Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids. J Magn Magn Mater 380:27–33

    Article  CAS  Google Scholar 

  60. Mykhaylyk O, Antequera YS, Vlaskou D (2007) Plank, Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2:2391–2411

    Article  CAS  PubMed  Google Scholar 

  61. Basly B, Popa G, Fleutot S et al (2013) Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents. Dalton trans 42:2146–2157

    Article  CAS  PubMed  Google Scholar 

  62. Zhang D, Zhou C, Sun Z, Wu L-Z, Tung C-H, Zhang T (2012) Magnetically recyclable nanocatalysts (MRNCs): a versatile integration of high catalytic activity and facile recovery. Nanoscale 4:6244

    Article  CAS  PubMed  Google Scholar 

  63. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun. https://doi.org/10.1039/b207789b

    Article  Google Scholar 

  64. Yin M, O’Brien SJ (2003) Synthesis of monodisperse nanocrystals of manganese oxides. Am Chem Soc 125:10180

    Article  CAS  Google Scholar 

  65. Jana NR, Chen Y, Peng X (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935

    Article  CAS  Google Scholar 

  66. Horak D, Babic M, Mackova H, Benes MJJ (2007) Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. Sep Sci 30:1751

    Article  CAS  Google Scholar 

  67. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064

    Article  CAS  PubMed  Google Scholar 

  68. Lim CW, Lee IS (2010) Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 5:412

    Article  CAS  Google Scholar 

  69. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906

    Article  CAS  Google Scholar 

  70. Pardoe H, Chua-anusorn W, St Pierre TG, Dobson J (2001) Structural and magnetic properties of nanoscale magnetic particles synthesised by coprecipitation of iron oxide in the presence of dextran or polyvinyl alcohol. J Magn Mat 225:41–46

    Article  CAS  Google Scholar 

  71. Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Mater 225:17–20

    Article  CAS  Google Scholar 

  72. Harris LA, Goff JD, Carmichael AY, Riffle JS, Harburn JJ, Pierre TGSt, Saunders M (2003) Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 15:1367–1377

    Article  CAS  Google Scholar 

  73. Shinkai M, Suzuki M, Iijima S, Kobayashi T (1995) Antibodyconjugated magnetoliposomes for targeting cancer-cells and their application in hyperthermia. Biotechnol Appl Biochem 21:125–137

    Article  CAS  PubMed  Google Scholar 

  74. Gonzales M, Kirshnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Mater 293:265–270

    Article  CAS  Google Scholar 

  75. Kondo A, Fukuda H (1997) Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme Immobilization. J Ferment Bioeng 84:337–341

    Article  CAS  Google Scholar 

  76. Lao LL, Ramaujan RV (2004) Magnetic and hydrogel composite materials for hyperthermia applications. J Mater Sci Mater Med 15:1061–1064

    Article  CAS  PubMed  Google Scholar 

  77. Chen J, Yang LM, Liu YF, Ding GW, Pei Y, Li J, Hua GF, Huang J (2005) Preparation and characterization of magnetic targeted drug controlled-release hydrogel microspheres. Macromol Symp 225:71–80

    Article  CAS  Google Scholar 

  78. Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327

    Article  CAS  Google Scholar 

  79. Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  80. Khan AU, Chen L, Ge G (2021) Recent development for biomedical applications of magnetic nanoparticles. Inorg Chem Commun 134:108995

    Article  Google Scholar 

  81. Gawande MB, Brancoa PS, Varma RS (2013) Nano-magnetite Fe3O4 as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371

    Article  CAS  PubMed  Google Scholar 

  82. Roy S, Pericas MA (2009) Functionalized nanoparticles as catalysts for enantioselective processes. Org Biomol Chem 7:2669

    Article  CAS  PubMed  Google Scholar 

  83. Sreedhar B, Kumar AS, Reddy PS (2010) Magnetically separable Fe3O4 nanoparticles: an efficient catalyst for the synthesis of propargylamines. Tetrahedron Lett 14:1891–1895

    Article  Google Scholar 

  84. Mathew DS, Juang R-S (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65

    Article  CAS  Google Scholar 

  85. Yadav RS, Havlica J, Masilko J, Kalina L, Wasserbauer J, Hajdúchová M et al (2016) Impact of Nd3+ in CoFe2O4. J Magn Magn Mater 399:109–117

    Article  CAS  Google Scholar 

  86. Cullity BD, Graham CD (2016) spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J Magn Magn Mater 399:109–117

    Article  Google Scholar 

  87. Gaudon M, Pailhé N, Wattiaux A, Demourgues A (2009) Structural defects in AFe2O4 (a=Zn, Mg) spinels. Mater Res Bull 44:479–484

    Article  CAS  Google Scholar 

  88. Kuanr BK, Mishra S, Wang L, Del Conte D, Neupane D, Veerakumar V et al (2016) Frequency and field dependent dynamic properties of CoFe2–x AlxO4 ferrite nanoparticles. Mater Res Bull 76:22–27

    Article  CAS  Google Scholar 

  89. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144

    Article  PubMed  PubMed Central  Google Scholar 

  90. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    Article  CAS  PubMed  Google Scholar 

  91. Netto CG, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B: Enzym 85:71–92

    Article  Google Scholar 

  92. Li X-S, Zhu G-T, Luo Y-B, Yuan B-F, Feng Y-Q (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal Chem 45:233–247

    Article  CAS  Google Scholar 

  93. Chen L, Wang T, Tong J (2011) Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. TrAC Trends Anal Chem 30:1095–1108

    Article  CAS  Google Scholar 

  94. Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189

    Article  CAS  Google Scholar 

  95. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    Article  CAS  PubMed  Google Scholar 

  96. Huang S-H, Juang R-S (2011) Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res 13:4411

    Article  Google Scholar 

  97. Beveridge JS, Stephens JR, Williams ME (2011) The use of magnetic nanoparticles in analytical chemistry. Annu Rev Anal Chem 4:251–273

    Article  CAS  Google Scholar 

  98. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115:10637–10689

    Article  CAS  PubMed  Google Scholar 

  99. Manikandan A, Sridhar R, Antony SA, Ramakrishna SA (2014) simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2O nanostructures. J Mol Struct 1076:188–200

    Article  CAS  Google Scholar 

  100. Mulens V, Morales MdP, Barber DF (2013) Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review. ISRN Nanomate. https://doi.org/10.1155/2013/646284

    Article  Google Scholar 

  101. Obaidat IM, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63–89

    Article  PubMed  PubMed Central  Google Scholar 

  102. Samiei M, Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144

    Article  PubMed  PubMed Central  Google Scholar 

  103. Carregal-Romero S, Caballero-Díaz E, Beqa L, Abdelmonem AM, Ochs M, Hühn D et al (2013) Multiplexed sensing and imaging with colloidal nano-and microparticles. Annu Rev Anal Chem 6:53–81

    Article  CAS  Google Scholar 

  104. Iranifam M (2013) Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles. TrAC Trends Anal Chem 51:51–70

    Article  CAS  Google Scholar 

  105. Xu Y, Wang E (2012) Electrochemical biosensors based on magnetic micro/nano particles. Electrochim Acta 84:62–73

    Article  CAS  Google Scholar 

  106. Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wang D, Astruc D (2014) Fast-growing field of magnetically recyclable nanocatalysts. ChemInform. https://doi.org/10.1002/chin.201438277

    Article  Google Scholar 

  108. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    Article  CAS  PubMed  Google Scholar 

  109. Behrens S (2011) Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions. Nanoscale 3:877

    Article  CAS  PubMed  Google Scholar 

  110. Yu H, Chen M, Rice PM, Wang SX, White RL, Sun SH (2005) Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 5:379

    Article  CAS  PubMed  Google Scholar 

  111. Wang C, Daimon H, Sun SH (2009) Dumbbell-like Pt-Fe3O4nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett 9(4):1493

    Article  CAS  PubMed  Google Scholar 

  112. Xu CJ, Wang BD, Sun SH (2009) Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. Chem Soc 131:4216

    Article  CAS  Google Scholar 

  113. Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. R Soc Chem 6:43989–44012

    CAS  Google Scholar 

  114. Junhua You L, Wang YZ, Bao W (2021) A review of amino-functionalized magnetic nanoparticles for water treatment: features and prospects. J Clean Prod 281:124668

    Article  Google Scholar 

  115. Wang Q, Ma Y, Liu L, Yao S, Wu W, Wang Z, Lv P, Zheng J, Yu K, Wei W (2020) Plasma enabled Fe2O3/Fe3O nano-aggregates anchored on nitrogen-doped graphene as anode for sodium-ion batteries. Nanomaterials 10:782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Davis ME (2002) Non-viral gene delivery systems. Curr Opin Biotechnol 13(2):128–131

    Article  CAS  PubMed  Google Scholar 

  117. Chang YC, Chang SW, Chen DH (2006) Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. React Funct Polym 66(3):335–341

    Article  CAS  Google Scholar 

  118. Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res—ACS. https://doi.org/10.1021/ar200084x

    Article  Google Scholar 

  119. Mngadi S, Mokhosi S, Singh M, Mdlalose W (2020) Chitosan-functionalized Mg0.5Co0.5 Fe2O4 magnetic nanoparticles enhance delivery of 5-fluorouracil in vitro. Coatings 10(5):446

    Article  CAS  Google Scholar 

  120. Ramnandan D, Mokhosi S, Daniels A, Singh M (2021) Chitosan, polyethylene glycol and polyvinyl alcohol modified MgFe2O4 ferrite magnetic nanoparticles in doxorubicin delivery: a comparative study in vitro. Molecules 26(13):3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M (2021) An up-to-date review on alginate nanoparticles and nanofibers for biomedical and pharmaceutical applications. Adv Mater Interf 8(22):2100809

    Article  CAS  Google Scholar 

  122. Moeini N, Molaei S, Ghadermazi M (2021) Dysprosium (III) supported on CoFe2O4 MNPs as a heterogeneous catalyst for the selective oxidation of sulfides and synthesis of symmetrical disulfides. J Mol Struct 1246:131071

    Article  CAS  Google Scholar 

  123. Wei Wu, He Q, Jiang C, Nanoparticles MIO (2008) Synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  Google Scholar 

  124. Duan HW, Kuang M, Wang XX, Wang YA, Mao H, Nie SM (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem 112:8127–8131

    CAS  Google Scholar 

  125. LaConte LE, Nitin N, Zurkiya O, Caruntu D, O’Connor CJ, Hu X, Bao G (2007) Coating thickness of magnetic iron oxide nanoparticles affects R-2 relaxivity. J Magn Reson 26:1634–1641

    Google Scholar 

  126. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang C, Shi X, Yu F, Quan Y (2020) Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles Fe3O4 for the selective detectionof acrylamide in potato chips. Food Chem 317:12

    Article  Google Scholar 

  128. Wen T, Zhu W, Xue C, Wu J, Han Q, Wang X et al (2014) Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@ Polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron 56:180–185

    Article  CAS  PubMed  Google Scholar 

  129. Jouyandeh M, Ganjali MR, Ali JA, Aghazadeh M, Paran SMR, Naderi G et al (2019) Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized Znx Fe3-x O4 magnetic nanoparticles. Prog Org Coat 136:105227

    Article  CAS  Google Scholar 

  130. Nguyen AH, Abdelrasoul GN, Lin D, Maadi H, Tong J, Chen G et al (2018) Polyethylenimine-coated iron oxide magnetic nanoparticles for high efficient gene delivery. Appl Nanosci 8:811–821

    Article  CAS  Google Scholar 

  131. Lv S, Sheng J, Zhao S, Liu M, Chen L (2018) The detection of brucellosis antibody in whole serum based on the low-fouling electrochemical immunosensor fabricated with magnetic Fe3O4@ Au@ PEG@ HA nanoparticles. Biosens Bioelectron 117:138–144

    Article  CAS  PubMed  Google Scholar 

  132. Martín M, Salazar P, Villalonga R, Campuzano S, Pingarrón JM, González-Mora JL (2014) Preparation of Core–shell Fe3O4@ poly (dopamine) magnetic nanoparticles for biosensor construction. J Mater Chem B 2:739–746

    Article  PubMed  Google Scholar 

  133. Osborne EA, Atkins TM, Gilbert DA, Kauzlarich SM, Liu K, Louie AY (2012) Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology 23:215602

    Article  PubMed  Google Scholar 

  134. Metin CO, Baran JR, Nguyen QP (2012) Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface. J Nanoparticle Res 14(11):1–16

    Article  Google Scholar 

  135. Wang L, Wang Z, Yang H, Yang G (1999) The study of thermal stability of the SiO2 powders with high specific surface area. Mater Chem Phys 57(3):260–263

    Article  CAS  Google Scholar 

  136. Yi DK, Lee SS, Ying JY (2006) Synthesis and applications of magnetic nanocomposite catalysts. Chem Mater 18:2459

    Article  CAS  Google Scholar 

  137. Panella B, Vargas A, Baiker A (2009) Magnetically separable Pt catalyst for asymmetric hydrogenation. J Catal 261:88–93

    Article  CAS  Google Scholar 

  138. Zhao L, Yu JG, Chang B, Zhao XJ (2003) Preparation and formation mechanism of monodispersed silicon dioxide spherical particles. Acta Chim Sin 61:562–566

    CAS  Google Scholar 

  139. Mikani M, Rahmanian R, Karimnia M, Sadeghi A (2017) Novel I-V disposable urea biosensor based on a dip-coated hierarchical magnetic nanocomposite (Fe3O4@ SiO2@NH2)on SnO: F layer. J Chin Chem Soc 64:1446–1459

    Article  CAS  Google Scholar 

  140. Zanardi FB, Barbosa IA, Filho PCS, Zanatta LD, da Silva DL, Serra OA, Iamamoto Y (2016) Manganese porphyrin functionalized on Fe3O4@nSiO2@MCM-41 magnetic composite: structural characterization and catalytic activity as cytochrome P450 model. Microporous Mesoporous Mater 219:161–171

    Article  CAS  Google Scholar 

  141. de Mendoncüa E, de Faria A, Dias S, Aragon F, Mantilla JC, Coaquira JAH, Dias J (2018) Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surf Interfaces 14:34–43

    Article  Google Scholar 

  142. Elmobarak WF, Almomani F (2021) Functionalization of silica-coated magnetic nanoparticles as powerful demulsifier to recover oil from oil-in-water emulsion. Chemosphere 279:130360

    Article  CAS  PubMed  Google Scholar 

  143. Cao SX, Wang JX, He ZJ (2018) Magnetic nanoparticles supported cinchona alkaloids for asymmetric Michael addition reaction of 1, 3-dicarbonyls and maleimides. Chin Chem Lett 29:201–204

    Article  CAS  Google Scholar 

  144. Cai L, Wang W, Yong Yang X, Zhou P, Wu Tang H, Rao J, Pang DW (2014) Preparation of fluorescent magnetic silica nanoprobes for recognition and separation of human lung cancer cells. Austin J analyt Pharm Chem 1(6):1027

    CAS  Google Scholar 

  145. Karimirad F, Behbahani FK (2021) g-Fe2O3@Si-(CH2)3@mel@(CH2)4SO3H as a magnetically bifunctional andretrievable nanocatalyst for green synthesis of benzo[c]acridine-8(9H)-ones and 2-amino-4H-chromenes. Inorg Nano-Met Chem 51(5):656–666

    Article  CAS  Google Scholar 

  146. Ferdousian R, Behbahani FK, Mohtat B (2022) Synthesis and characterization of Fe3O4@Sal@Cu as a novel, efficient and heterogeneous catalyst and its application in the synthesis of 2-amino-4H-chromenes. Mol Divers 26(6):1–13

    Article  Google Scholar 

  147. Sadri Z, Behbahani FK, Keshmirizadeh E (2022) Synthesis and characterization of a novel and reusable adenine based acidic nanomagnetic catalyst and its application in the preparation of 2-substituted-2,3-dihydro-1H-perimidines under ultrasonic irradiation and solvent-free condition. Polycycl Aromat Compd 43(2):1898–1913

    Article  Google Scholar 

  148. Sadri Z, Behbahani FK, Keshmirizadeh E (2022) One-pot multicomponent synthesis of 2,6 diamino-4-arylpyridine-3,5-dicarbonitriles using prepared nanomagnetic Fe3O4@SiO2@(CH2)3NHCO-adenine sulfonic acid. Inorg Nano-Met Chem 2078354:1–10

    Google Scholar 

  149. Shokri F, Behbahani FK (2021) Synthesis of Fe3O4@L-proline@SO3H as a noveland reusable acidic magnetic nanocatalyst and its application for the synthesis of N-substituted pyrroles at room temperature under ultrasonic irradiation and without solvent. Inorg Nano-Met Chem 52(8):1143–1152

    Article  Google Scholar 

  150. Bae H, Ahmad T, Rhee I, Chang Y, Jin S-U, Hong S (2012) Carbon-coated iron oxide nano-2 particles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett 7(44):1–5

    Google Scholar 

  151. Zhang XL, He ML, Liu JH, Liao R, Zhao LQ, Xie JR, Wang RJ, Yang ST, Wang HF, Liu YF (2014) Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Chin Sci Bull 59:3406–3412

    Article  CAS  Google Scholar 

  152. He CN, Wu S, Zhao NQ, Shi CS, Liu EZ, Li JJ (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469

    Article  CAS  PubMed  Google Scholar 

  153. Xie M, Zhang F, Long Y, Ma J (2013) Pt nanoparticles supported on carbon coated magnetic microparticles: an efficient recyclable catalyst for hydrogenation of aromatic nitro-compounds. RSC Adv 3:10329

    Article  CAS  Google Scholar 

  154. Liang H, Niu H, Li P, Tao Z, Mao C, Song J, Zhang S (2013) Multifunctional Fe3O4@C@Ag hybrid nanoparticles: aqueous solution preparation, characterization and photocatalytic activity. Mater Res Bull 48:2415

    Article  CAS  Google Scholar 

  155. Queiroz DF, Dadamos TR, Machado SA, Martines MA (2018) Electrochemical determination of norepinephrine by means of modified glassy carbon electrodes with carbon nanotubes and magnetic nanoparticles of cobalt ferrite. Sensors 18(4):1223

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhang M, Zheng J, Wang J, Xu J, Hayat T, Alharbi NS (2019) Direct electrochemistry of cytochrome c Immobilized on one dimensional Au nanoparticles functionalized magnetic N-doped carbon nanotubes and its application for the detection of H2O2. Sens Actuators B: Chem 282:85–95

    Article  CAS  Google Scholar 

  157. Orooji Y, Mohassel R, Amiri O, Sobhani A, SalavatiNiasari M (2020) Gd2ZnMnO6/ZnO nanocomposites: green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. J Alloys Compd 835:155240

    Article  CAS  Google Scholar 

  158. Taherian Z, Khataee A, Orooji Y (2020) Facile synthesis of yttriapromoted nickel catalysts supported on MgO-MCM-41 for syngas production from greenhouse gases. Renew Sustain Energy Rev 134:110130

    Article  CAS  Google Scholar 

  159. Hofmann-amtenbrink M, Hofmann H, Pully M et al (2009) Superparamagnetic nanoparticles for biomedical applications. Nanostruct Mater Biomed Appl 661:119–149

    Google Scholar 

  160. Chen H, Qi F, Zhou H, Jia S, Gao Y, Koh K, Yin Y (2015) Fe3O4 @Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection. Sens, Actuators B-Chem 212:505–511

    Article  CAS  Google Scholar 

  161. Mahmood A, Ramay SM, Al-Zaghayer YS, AlHazaa AAN, Al Masary WA, Atiq S (2016) Synthesis and investigation of photocatalytic properties of Au/Fe3O4 nanocomposite materials for degradation of methylene blue. Desalination Water Treat 57:20069–20075

    Article  CAS  Google Scholar 

  162. Silva SM, Tavallaie R, Sandiford L, Tilley RD, Gooding JJ (2016) Gold coated magnetic nanoparticles: From preparation to surface modification for analytical and biomedical applications. Chem Commun 52:7528–7540

    Article  Google Scholar 

  163. Arsianti M, Lim M, Lou SN, Goon IY, Marquis CP, Bi R (2011) Amal, functional gold-coated magnetite composites with improved biocompatibility. J Colloid Interface Sci 354:536–545

    Article  CAS  PubMed  Google Scholar 

  164. Leung KC, Xuan S, Zhu X, Wang D, Chak C-P, Lee SF, Hob WK-W, Chung BC-T (1911) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 2012:41

    Google Scholar 

  165. Wang H, Kou X, Zhang J, Li J (2008) Large scale synthesis and characterization of Ni nanoparticles by solution reduction method. Bull Mater Sci 31:97–100

    Article  Google Scholar 

  166. Alruqi SS, Al-Thabaiti SA, Khan Z (2019) Iron-nickel bimetallic nanoparticles: surfactant assisted synthesis and their catalytic activities. J Mol Liquids 282:448–455

    Article  CAS  Google Scholar 

  167. Barnett C, Gueorguieva M, Lees M, McGarvey D, Darton R, Hoskins C (2012) Effect of the hybrid composition on the physicochemical properties and morphology of iron oxide–gold nanoparticles. J Nanopart Res 14:1170

    Article  Google Scholar 

  168. Zhai Y, Zhai J, Wang Y, Guo S, Ren W, Dong S (2009) Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering. J Phys Chem C 113:7009–7014

    Article  CAS  Google Scholar 

  169. Lim JK, Majetich SA, Tilton RD (2009) Stabilization of superparamagnetic iron oxide coregold shell nanoparticles in high ionic strength media. Langmuir 25:13384–13393

    Article  CAS  PubMed  Google Scholar 

  170. Hsiao S-C, Ou J-L, Sung Y, Chang C-P, Ger M-D (2010) Preparation of sulfate-and carboxylfunctionalized magnetite/polystyrene spheres for further deposition of gold nanoparticles. Colloid Polym Sci 288:787–794

    Article  CAS  Google Scholar 

  171. Wang H, Chen Ch, Zhang H, Wang G, Zhao H (2018) An efficient and reusable bimetallic Ni3Fe NPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone. Chinese J Catal 39:1599–1607

    Article  CAS  Google Scholar 

  172. Malik MA, Alshehri AA, Patel R (2021) Facile one-pot green synthesis of AgeFe bimetallic nanoparticles and their catalytic capability for 4nitrophenol Reduction. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2021.02.063

    Article  Google Scholar 

  173. Wang Z, Chen M, Shu J, Li Y (2016) One-step solvothermal synthesis of Fe3O4@Cu@Cu2O nanocomposite as magnetically recyclable mimetic peroxidase. J Alloys Compd 682:432–440

    Article  CAS  Google Scholar 

  174. Fakhri A, Tahami S, Nejad PA (2017) Preparation and characterization of Fe3O4-Ag2O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer. J Photochem Photobiol B Biol 175:83–88

    Article  CAS  Google Scholar 

  175. Zhang X, Wang H, Yang C, Du D, Lin Y (2013) Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosens Bioelectron 41:669–674

    Article  CAS  PubMed  Google Scholar 

  176. Ozer D, Icten O, Uzgoren-Baran A, Oztas NA (2020) Facile synthesis of vanadium oxide supported on Fe3O4@ SiO2 composite: an effective catalyst for oxidative dehydrogenation reaction of tetrahydrocarbazole. Ceram Int 4(9):13762–13767

    Article  Google Scholar 

  177. Shekofteh-Gohari M, Habibi-Yangjeh A (2017) Fe3O4/ZnO/CoWO nanocomposites: Novel magnetically separable visible-light-driven photocatalysts with enhanced activity in degradation of different dye pollutants. Ceram Int 43:3063–3071

    Article  CAS  Google Scholar 

  178. Elhamarnah Y, Nasser MS, Qiblawey H, Benamor A, Atilhan M, Aparicio S (2019) A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents. J Mol Liq 277:932–958

    Article  CAS  Google Scholar 

  179. Beytur M, Kardas F, Akyildirim O, Özkan A, Bankoglu B, Yüksek H, Yola ML, Atar N (2018) A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime. J Mol Liq 251:212–217

    Article  CAS  Google Scholar 

  180. Yue SA, Wang PP, Hao XY (2019) Synthesis of cyclic carbonate from CO2 and epoxide using bifunctional imidazolium ionic liquid under mild conditions. Fuel 251:233–241

    Article  CAS  Google Scholar 

  181. Jung J-Y, Kim J-B, Taher A, Jin M-J (2009) Bull, Pd(OAc)2 immobilized on Fe3O4 as magnetically separable heteogeneous catalyst for Suzuki reaction in water. Korean Chem Soc 30:3082

    Article  CAS  Google Scholar 

  182. Linhardt R, Kainz QM, Grass RN, Stark WJ (2014) Reiser, Palladium nanoparticles supported on ionic liquid modified, magnetic nanobeads—recyclable, high-capacity catalysts for alkene hydrogenation. RSC Adv 4:8541

    Article  CAS  Google Scholar 

  183. Wang T, Zhang R, Gong Zh, Su P, Yang Y (2020) Poly (Ionic Liquids) functionalized magnetic nanoparticles as efficient adsorbent for determination of pyrethroids from environmental water samples by GC-MS. ChemistrySelect 5:91–96

    Article  CAS  Google Scholar 

  184. Abujaber F, Zougagh M, Jodeh Sh, Ríos Á, Guzmán Bernardo F, Rodríguez Martín-Doimeadiós RC (2017) Magnetic cellulose nanoparticles coated with ionic liquid as a new material for the simple and fast monitoring of emerging pollutants in waters by magnetic solid phase extraction. Microchem J 137:490–495

    Article  Google Scholar 

  185. Zheng X, He L, Duan Y, Jiang X, Xiang G, Zhao W, Zhang Sh (2014) Poly(ionic liquid) immobilized magnetic nanoparticles as new adsorbent for extraction and enrichment of organophosphorus pesticides from tea drink. J Chromatogr A 5(1358):39–45

    Article  Google Scholar 

  186. Bilal M, Zhao Y, Rasheed T, Iqba HMN (2018) magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int J Biol Macromol 120:2530–2544

    Article  CAS  PubMed  Google Scholar 

  187. Bilal M, Rasheed T, Zhao Y, Iqbal HM, Cui J (2018) “Smart” chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol 119:278–290

    Article  CAS  PubMed  Google Scholar 

  188. Miao Y, Rahimi M, Geertsema EM, Poelarends GJ (2015) Recent developments in enzyme promiscuity for carbon–carbon bond-forming reactions. Curr Opin Chem Biol 25:115–123

    Article  CAS  PubMed  Google Scholar 

  189. Apetrei IM, Rodriguez-Mendez ML, Apetrei C, De Saja JA (2013) Enzyme sensor based on carbon nanotubes/cobalt (II) phthalocyanine and tyrosinase used in pharmaceutical analysis. Sensors Actuators B Chem 177:138–144

    Article  CAS  Google Scholar 

  190. Constantin MA, Conrad J, Beifuss U (2012) Laccase-catalyzed oxidative phenolic coupling of vanillidene derivatives. Green Chem 14(9):2375–2379

    Article  CAS  Google Scholar 

  191. Das R, Ghosh S, Bhattacharjee C (2012) Enzyme membrane reactor in isolation of antioxidative peptides from oil industry waste: a comparison with non-peptidic antioxidants. LWT Food Sci Technol 47(2):238–245

    Article  CAS  Google Scholar 

  192. Bilal M, Asgher M, Iqbal HM, Hu H, Zhang X (2017) Delignification and fruit juice clarification properties of alginate-chitosan-immobilized ligninolytic cocktail. LWT Food Sci Technol 80:348–354

    Article  CAS  Google Scholar 

  193. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48(32):5875–5879

    Article  CAS  Google Scholar 

  194. Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19(8):11465–11486

    Article  PubMed  PubMed Central  Google Scholar 

  195. Liu DM, Chen J, Shi YP (2018) Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends Anal Chem 102:332–342

    Article  CAS  Google Scholar 

  196. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28–29

    Article  CAS  PubMed  Google Scholar 

  198. Cui J, Sun B, Lin T, Feng Y, Jia S (2018) Enzyme shielding by mesoporous organosilica shell on Fe3O4 @ silica yolk-shell nanospheres. Int J Biol Macromol 117:673–682

    Article  CAS  PubMed  Google Scholar 

  199. Tural B, Tural S, Ertas E, Yalinkiliç I, Demir AS (2013) Purification and covalent immobilization of benzaldehyde lyase with heterofunctional chelate-epoxy modified magnetic nanoparticles and its carboligation reactivity. J Mol Catal B Enzym 95:41–47

    Article  CAS  Google Scholar 

  200. Gao L, Wu J, Lyle S, Zehr K, Cao L, Gao D (2008) Magnetite nanoparticle-linked immunosorbent assay. J Phys Chem 44:17357–17361

    Google Scholar 

  201. Wang Y, Xu F, Zhang L, Wei X (2013) One-pot solvothermal synthesis of Fe3O4–PEI composite and its further modification with Au nanoparticles. J Nanopart Res 15(1):1338

    Article  Google Scholar 

  202. Martín M, Salazar P, Villalonga R, Campuzano S, Pingarrón JM, González-Mora JL (2014) Preparation of core–shell Fe3O4 @ poly (dopamine) magnetic nanoparticles for biosensor construction. J Mate Chem 2(6):739–746

    Google Scholar 

  203. Liu Y, Jia S, Wu Q, Ran J, Zhang W, Wu S (2011) Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal Commun 12(8):717–720

    Article  CAS  Google Scholar 

  204. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol. https://doi.org/10.1186/1472-6750-11-63

    Article  PubMed  PubMed Central  Google Scholar 

  205. Liu DM, Chen J, Shi YP (2017) α-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. Int J Biol, Macromol 105:308–316

    Article  CAS  PubMed  Google Scholar 

  206. Zhou Z, Hartmann M (2013) Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev 42(9):3894–3912

    Article  CAS  PubMed  Google Scholar 

  207. Ibrahim AS, Al-Salamah AA, El-Toni AM, El-Tayeb MA, Elbadawi YB (2014) Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core-shell silica nanospheres. Electron J Biotechnol 17(2):55–64

    Article  Google Scholar 

  208. Wang L, Liang J, Zhu Y, Mei T, Zhang X, Yang Q, Qian Y (2013) Synthesis of Fe3O4@C core–shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale 5(9):3627–3631

    Article  CAS  PubMed  Google Scholar 

  209. Ke F, Qiu LG, Yuan YP, Jiang X, Zhu JF (2012) Fe3O4 @ MOF core–shell magnetic microspheres with a designable metal–organic framework shell. J Mater Chem 22(19):9497–9500

    Article  CAS  Google Scholar 

  210. Pang F, He M, Ge J (2015) Controlled synthesis of Fe3O4 /ZIF-8 nanoparticles for magnetically separable nanocatalysts. Chem Eur J 21(18):6879–6887

    Article  CAS  PubMed  Google Scholar 

  211. Zheng J, Cheng C, Fang WJ, Chen C, Yan RW, Huai HX, Wang CC (2014) Surfactant-free synthesis of a Fe3O4 @ ZIF-8 core–shell heterostructure for adsorption of methylene blue. CrystEngComm 16(19):3960–3964

    Article  CAS  Google Scholar 

  212. Tripathy A, Nine M, SamuelSilva F (2021) Biosensing platform on ferrite magnetic nanoparticles: synthesis, functionalization, mechanism and applications. Adv Colloid Interf Sci 290:102380

    Article  CAS  Google Scholar 

  213. Zhang Z, Kong J (2011) Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J Hazard Mater 193:325–329

    Article  CAS  PubMed  Google Scholar 

  214. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  PubMed  Google Scholar 

  215. Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904

    Article  CAS  Google Scholar 

  216. Liu X, Zhang L, Zeng J, Gao Y, Tang Z (2013) Superparamagnetic nano-immunobeads toward food safety insurance. J Nanoparticle Res. https://doi.org/10.1007/s11051-013-1796-x

    Article  Google Scholar 

  217. Magro M, Venerando A, Macone A, Canettieri G, Agostinelli E, Vianello F (2020) Nanotechnology-based strategies to develop new anticancer therapies. Biomolecules 10:735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Rahim S, Iftikhar FJ, Malik MI (2020) Biomedical Applications of Magnetic Nanoparticles; Elsevier: Amsterdam, pp. 301–328.

  219. Dzhardimalieva GI, Pomogailo AD, Rozenberg AS, Leonowicz M (2009) Magnetic metallopolymer nanocomposites: preparation and properties. Magn Nanoparticles. https://doi.org/10.1002/9783527627561.ch3

    Article  Google Scholar 

  220. Long NV, Yang Y, Teranishi T, Thi CM, Cao Y, Nogami M (2015) Biomedical applications of advanced multifunctional magnetic nanoparticles. J Nanosci Nanotechnol 15:10091–10107

    Article  PubMed  Google Scholar 

  221. Mohapatra M, Anand S (2011) Synthesis and applications of nano-structured iron oxides/hydroxides—A review. Int J Eng Sci Technol 2:127–146

    Article  Google Scholar 

  222. Fang S, Bresser D, Passerini S (2020) Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv Energy Mater 10:10

    Article  Google Scholar 

  223. Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S (2020) Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials 13:4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Saharan P, Chaudhary GR, Mehta SK, Umar A (2014) Removal of water contaminants by iron oxide nanomaterials. Nanosci Nanotechnol 14:627–643

    CAS  Google Scholar 

  225. Rasheed T (2022) Magnetic nanomaterials: greener and sustainable alternatives for the adsorption of hazardous environmental contaminants. J Clean Prod 362:132338

    Article  CAS  Google Scholar 

  226. Shi J, Zhang J, Wang C, Liu Y, Li J (2023) Research progress on the magnetite nanoparticles in the fields of water pollution control and detection. Chemosphere 139220.

  227. Krishnan MK (2010) Biomedical Nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. Adv Magn. https://doi.org/10.1109/TMAG.2010.2046907

    Article  Google Scholar 

  228. Baki A, Wiekhorst F, Bleul R (2021) Advances in magnetic nanoparticles engineering for biomedical applications—a review. Bioengineering (Basel) 8(10):134

    Article  CAS  PubMed  Google Scholar 

  229. Schneider-Futschik EK, Reyes-Ortega F (2021) Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders. Pharmaceutics 13(8):1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kianfar E (2022) Magnetic Nanoparticles in Medical Imaging, Imaging in Medicine14(6).

  231. Kefeni KK, Msagati TAM, Mamba BB (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng 215:37–55

    Article  CAS  Google Scholar 

  232. Pandit VA, Repe GR, Bhamre JD, Chaudhari ND (2020) A review on green synthesis and characterization technique for ferrite nanoparticles and their applications. J Phys 1644(1):012009

    CAS  Google Scholar 

  233. Ashis Tripathy Md, Nine J, Silva FS (2021) Biosensing platform on ferrite magnetic nanoparticles: synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 290:102380

    Article  PubMed  Google Scholar 

  234. Shahidi S (2019) Magnetic nanoparticles application in the textile industry. J Ind Text 50(7):970–989

    Article  Google Scholar 

  235. Fernandes M, Padrão J, Ribeiro AI, Fernandes RDV, Melro L, Nicolau T, Mehravani B, Alves C, Rodrigues R, Zille A (2022) Polysaccharides and metal nanoparticles for functional textiles. Nanomaterials 12(6):1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Guleria G, Thakur S, Shandilya M, Sharma S, Thakur S, Kalia S (2023) Nanotechnology for sustainable agro-food systems: the need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiol Biochem 194:533–549

    Article  CAS  PubMed  Google Scholar 

  237. Shende S, Rajput VD, Gade A, Minkina T, Fedorov Y (2021) Metal-based green synthesized nanoparticles: boon for sustainable agriculture and food security. Inst Electr Electr Eng 21(1):44–54

    Google Scholar 

  238. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  CAS  PubMed  Google Scholar 

  241. Wang YXJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331

    Article  CAS  PubMed  Google Scholar 

  242. Lawrence R (1998) Development and comparison of iron dextran products. PDA J Pharm Sci Technol 52(5):190–197

    CAS  PubMed  Google Scholar 

  243. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  PubMed  Google Scholar 

  244. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39

    Article  CAS  PubMed  Google Scholar 

  245. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064

    Article  CAS  PubMed  Google Scholar 

  246. Misra RDK (2008) Magnetic nanoparticle carrier for targeted drug delivery: perspective, outlook and design. Mater Sci Technol 24(9):1011–1019

    Article  CAS  Google Scholar 

  247. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167–R181

    Article  CAS  Google Scholar 

  248. Zhao ZL, Bian ZY, Chen LX, He XW, Wang YF (2006) Synthesis and surfacemodifications of iron oxide magnetic nanoparticles and applications on separation and analysis. Prog Chem 18(10):1288–1297

    CAS  Google Scholar 

  249. Perez JM, Josephson L, O’Loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820

    Article  CAS  PubMed  Google Scholar 

  250. Frullano L, Meade TJ (2007) Multimodal MRI contrast agents. J Biol Inorg Chem 12(7):939–949

    Article  CAS  PubMed  Google Scholar 

  251. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504

    Article  CAS  PubMed  Google Scholar 

  252. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60

    Article  CAS  Google Scholar 

  253. Duran JDG, Arias JL, Gallardo V, Delgado AV (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97(8):2948–2983

    Article  CAS  PubMed  Google Scholar 

  254. Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3(4):567–578

    Article  CAS  PubMed  Google Scholar 

  255. Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24(6):467–474

    Article  CAS  PubMed  Google Scholar 

  256. Anik MI, Hossain MK, Hossain I, Mahfuz AM, Rahman MT, Ahmed I (2020) Recent progress of magnetic nanoparticles in biomedical applications. Nano select 2(6):1146–1186

    Article  Google Scholar 

  257. Purbia R, Paria S (2015) Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale 7:19789–19873

    Article  CAS  PubMed  Google Scholar 

  258. Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA (2020) Microfluidics for production of particles: mechanism methodology, and applications. Small 16:e1904673

    Article  PubMed  Google Scholar 

  259. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  PubMed  Google Scholar 

  260. Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, Li C-Z (2010) Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem 17:3120–3141

    Article  CAS  PubMed  Google Scholar 

  261. Amiri S, Shokrollahi H (2013) The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng 33:1–8

    Article  CAS  Google Scholar 

  262. Ambashta RD, Sillanp M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(13):38–49

    Article  CAS  PubMed  Google Scholar 

  263. Almomani F, Bhosale R, Khraisheh M, Kumar A, Almomani T (2020) Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl Surf Sci 506:144924

    Article  CAS  Google Scholar 

  264. Chunming Su (2016) Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J Hazard Mater 322:48–84

    Google Scholar 

  265. Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J, Erhardt W et al (2003) Magnetic drug targeting biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 11(3):139–149

    Article  CAS  PubMed  Google Scholar 

  266. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  PubMed  Google Scholar 

  267. Alexiou C, Jurgons R, Schmid R, Erhardt W, Parak F, Bergemann C et al (2005) Magnetic drug targeting a new approach in locoregional tumor therapy with chemotherapeutic agents. Exp Anim 53(7):618–622

    CAS  Google Scholar 

  268. Chadha U, Bhardwaj P, Selvaraj SK, Kaviya Arasu S, Praveena AP, Khanna M, Singh P, Singh S, Chakravorty A, Badoni B, Banavoth M et al (2022) Current trends and future perspectives of nanomaterials in food packaging application. J Nanomater. https://doi.org/10.1155/2022/2745416

    Article  Google Scholar 

  269. Dobrucka R (2020) Application of nanotechnology in food packaging. J Microbiol Biotechnol Food Sci 2020:353–359

    Google Scholar 

  270. Seghar S, Azem S, Aït Hocine N (2011) Effects of clay nanoparticles on the mechanical and physical properties of unsaturated polyester. Adv Sci Lett 4(11):3424–3430

    Article  CAS  Google Scholar 

  271. Khaydarov RR, Khaydarov RA, Estrin Y et al (2009) “Silver Nanoparticles”, in Nanomaterials: risks and benefits. Springer, Dordrecht

    Google Scholar 

  272. Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914

    Article  CAS  Google Scholar 

  273. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908

    Article  CAS  PubMed  Google Scholar 

  274. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. de Monredon S, Cellot A, Ribot F et al (2002) Synthesis and characterization of crystalline tin oxide nanoparticles. J Mater Chem 12(8):2396–2400

    Article  Google Scholar 

  276. Ahmad M, Gani A, Hassan I, Huang Q, Shabbir H (2020) Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Sci Rep 10(1):1–11

    Article  Google Scholar 

  277. Kulkarni K, Chadha U, Yadav S et al (2021) Latest trends and advancement in porous carbon for biowaste organization and utilization. ECS J Solid State Sci Technol 11(1):011003

    Google Scholar 

  278. Stark NM (2016) Opportunities for cellulose nanomaterials in packaging films: a review and future trends. Journal of Renewable Materials 4(5):313–326

    Article  CAS  Google Scholar 

  279. Khan A, Wen Y, Huq T, Ni Y (2017) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66(1):8–19

    Article  PubMed  Google Scholar 

  280. Belting M, Sandgren S, Wittrup A (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev 57:505–527

    Article  CAS  PubMed  Google Scholar 

  281. Davis ME (2002) Non-viral gene delivery systems. Curr Opin Biotechnol 13:128–131

    Article  CAS  PubMed  Google Scholar 

  282. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  PubMed  Google Scholar 

  283. Majidi S et al (2016) Magnetic nanoparticles: Applications in gene delivery and gene therapy. Artif Cells Nanomed Biotechnol 44(4):1186–1193

    CAS  PubMed  Google Scholar 

  284. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  PubMed  Google Scholar 

  285. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  PubMed  Google Scholar 

  286. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: Essential factors for sustainableenvironmental applications. Water Res 47:2613–2632

    Article  CAS  PubMed  Google Scholar 

  287. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  PubMed  Google Scholar 

  288. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  CAS  PubMed  Google Scholar 

  289. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  PubMed  Google Scholar 

  290. Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC (2010) In vivo quantum-dot toxicity assessment. Small 6(1):138–144

    Article  CAS  PubMed  Google Scholar 

  291. Liu N, Tang M (2020) Toxicity of different types of quantum dots to mammalian cells in vitro: an update review. J Hazard Mater 399:122606

    Article  CAS  PubMed  Google Scholar 

  292. Sayes M, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97(1):163–180

    Article  CAS  PubMed  Google Scholar 

  293. Wu T, Xu H, Liang X, Tang M (2019) Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere 221:708–726

    Article  CAS  PubMed  Google Scholar 

  294. Singh KR, Nayak V, Sabui P, Mallick S, Singh J, Singh RP (2022) Bioinspired quantum dots: Promising nanosystems for biomedical application. Nano-Struct Nano-Objects 32:100921

    Article  CAS  Google Scholar 

  295. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1999) Superparamagnetic iron oxide: pharmacokinetics and toxicity. J Magn Magn Mater 194:76–82

    Google Scholar 

  296. Hafeli UO, Pauer GJ, Roberts WK et al (1997) ScientiÞc and Clinical Applications of Magnetic Carriers. In: Hafeli U, Schu¬ tt W, Teller J et al (Eds.), Plenum, New York, p. 501.

  297. Jordan A, Scholz R, Wust P et al (1997) Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 13:587

    Article  CAS  PubMed  Google Scholar 

  298. von Appen K, Weber C, Losert U et al (1996) Microspheres based detoxification system: a new method in convective blood purification. Artif Organs 20:420

    Article  Google Scholar 

  299. Donaldson K et al (2004) Nanotoxicology. Occup Environ Med 61(9):727–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Powers KW et al (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51

    Article  CAS  Google Scholar 

  301. Hussain SM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983

    Article  CAS  PubMed  Google Scholar 

  302. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711

    Article  CAS  Google Scholar 

  303. Gojova A et al (2007) Inductionofinflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115(3):403–409

    Article  CAS  PubMed  Google Scholar 

  304. Brunner TJ et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  CAS  PubMed  Google Scholar 

  305. Warheit DB et al (2007) Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 19(8):631–643

    Article  CAS  PubMed  Google Scholar 

  306. Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Article  CAS  Google Scholar 

  307. Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  CAS  PubMed  Google Scholar 

  308. Mahmoudi M, Simchi A, Imani M et al (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf 75:300–309

    Article  CAS  Google Scholar 

  309. Kiranmai M (2017) Biological and non-biological synthesis of metallic nanoparticles: scope for current pharmaceutical research. Indian J Pharm Sci. https://doi.org/10.4172/pharmaceutical-sciences.1000256

    Article  Google Scholar 

  310. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev J 44:8576–8607

    Article  CAS  Google Scholar 

  311. Arnida J-AMM, Ray A, Peterson CM, Ghandehari H (2011) Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 77:417–423

    Article  CAS  PubMed  Google Scholar 

  312. Andrade RGD, Veloso SRS, Castanheira EMS (2020) Shape anisotropic iron oxide-based magnetic nanoparticles: synthesis and biomedical applications. Int J Mol Sci 21:2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Balasubramanian V, Liu Z, Hirvonen J, Santos HA (2018) Nanomedicine: Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Adv Healthcare Mater 7:1870005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. Shahbazi wrote the manuscript text, under supervision of F.K. Behbahani. All authors reviewed the manuscript.

Corresponding author

Correspondence to Farahnaz K. Behbahani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, R., Behbahani, F.K. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10801-9

Keywords

Navigation