Skip to main content

Advertisement

Log in

Synthesis, Characterization and Applications of Magnetic Iron Oxide Nanostructures

  • Review Article -- Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Magnetic iron oxide nanoparticles (MIONPs) have been extensively utilized for several applications that include catalysis (artificial enzymes, nanozyme), renewable energy harvesting, solvents detoxification, heavy-metal remediation, biosensors and medical biotechnology such as drug delivery and magnetic resonance imaging. The magnetic susceptibility of iron oxide nanoparticles (IONPs) is the key feature, which enables them to be utilized for these applications. Depending on specific applications, various experimental methods like hydrothermal, sol–gel, co-precipitation, physical (PVD), and chemical vapor deposition (CVD) can be employed for the fabrication of MIONPs of desired properties. This review critically discusses various techniques for the synthesis and characterization of MIONPs, and their key applications in the fields of health, environment, agriculture, energy, and industrial sectors. The review is concluded with suggestions for future research with a view to efficient utilization and technological applications of MIONPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mansha, M.; Qurashi, A.; Ullah, N.; Bakare, F.O.; Khan, I.; Yamani, Z.H.: Synthesis of In\(_2\)O\(_3\)/graphene heterostructure and their hydrogen gas sensing properties. Ceram. Int. 42, 11490–11495 (2016). doi:10.1016/j.ceramint.2016.04.035

    Article  Google Scholar 

  2. ullah, H.; Khan, I.; Yamani, Z.H.; Qurashi, A.: Sonochemical-driven ultrafast facile synthesis of SnO\(_2\) nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason. Sonochem. 34, 484–490 (2017). doi:10.1016/j.ultsonch.2016.06.025

    Article  Google Scholar 

  3. Qurashi, A.; Alhaffar, M.; Yamani, Z.H.: Hierarchical ZnO/zeolite nanostructures: synthesis, growth mechanism and hydrogen detection. RSC Adv. 5, 22570–22577 (2015). doi:10.1039/C4RA15497E

    Article  Google Scholar 

  4. Qurashi, A.; Rather, J.A.; De Wael, K.; Merzougui, B.; Tabet, N.; Faiz, M.: Rapid microwave synthesis of high aspect-ratio ZnO nanotetrapods for swift bisphenol A detection. Analyst 138, 4764 (2013). doi:10.1039/c3an00336a

    Article  Google Scholar 

  5. Ahsanulhaq, Q.; Kim, J.H.; Hahn, Y.B.: Immobilization of angiotensin II and bovine serum albumin on strip-patterned ZnO nanorod arrays. J. Nanosci. Nanotechnol. 10, 4159–4165 (2010). doi:10.1166/jnn.2010.2404

    Article  Google Scholar 

  6. Saeed, K.; Khan, I.: Preparation and properties of single-walled carbon nanotubes/poly(butylene terephthalate) nanocomposites. Iran. Polym. J. 23, 53–58 (2014). doi:10.1007/s13726-013-0199-2

    Article  Google Scholar 

  7. Miller, M.M.; Prinz, G.A.; Cheng, S.-F.; Bounnak, S.: Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Appl. Phys. Lett. 81, 2211–2213 (2002). doi:10.1063/1.1507832

    Article  Google Scholar 

  8. Jain, T.K.; Morales, M.A.; Sahoo, S.K.; Leslie-Pelecky, D.L.; Labhasetwar, V.: Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2(3), 194–205 (2005). doi:10.1021/MP0500014

    Article  Google Scholar 

  9. Modo, M.M.; Bulte, J.W. (eds.): Molecular and Cellular MR Imaging. CRC Press, Boca Raton (2007)

    Google Scholar 

  10. Shen, Z.; Wu, A.; Chen, X.: Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm. 14, 1352–1364 (2017). doi:10.1021/acs.molpharmaceut.6b00839

    Article  Google Scholar 

  11. Chiolerio, A.; Chiodoni, A.; Allia, P.; Martino, P.: Magnetite and other Fe-oxide nanoparticles. In: Handbook of Nanomaterials Properties. pp. 213–246. Springer, Berlin (2014)

  12. Charles, S.W.; Popplewell, J.: Properties and applications of magnetic liquids. Endeavour 6, 153–161 (1982). doi:10.1016/0160-9327(82)90070-9

    Article  Google Scholar 

  13. Atashin, H.; Malakooti, R.: Magnetic iron oxide nanoparticles embedded in SBA-15 silica wall as a green and recoverable catalyst for the oxidation of alcohols and sulfides. J. Saudi Chem. Soc. 21, S17–S24 (2017). doi:10.1016/j.jscs.2013.09.007

    Article  Google Scholar 

  14. Arora, A.K.; Sharma, M.; Kumari, R.; Jaswal, V.S.; Kumar, P.: Synthesis, characterization, and magnetic studies of \(\upalpha \)-\(\text{ Fe }_{2}\text{ O }_{3}\) nanoparticles. J. Nanotechnol. 2014, 1–7 (2014). doi:10.1155/2014/474909

    Article  Google Scholar 

  15. Vengsarkar, P.S.; Xu, R.; Roberts, C.B.: Deposition of iron oxide nanoparticles onto an oxidic support using a novel gas-expanded liquid process to produce functional Fischer–Tropsch synthesis catalysts. Ind. Eng. Chem. Res. 54, 11814–11824 (2015). doi:10.1021/acs.iecr.5b03123

    Article  Google Scholar 

  16. Rioult, M.; Stanescu, D.; Fonda, E.; Barbier, A.; Magnan, H.: Oxygen vacancies engineering of iron oxides films for solar water splitting. J. Phys. Chem. C 120, 7482–7490 (2016). doi:10.1021/acs.jpcc.6b00552

    Article  Google Scholar 

  17. Dias, P.; Vilanova, A.; Lopes, T.; Andrade, L.; Mendes, A.: Extremely stable bare hematite photoanode for solar water splitting. Nano Energy 23, 70–79 (2016). doi:10.1016/j.nanoen.2016.03.008

    Article  Google Scholar 

  18. Wu, W.; He, Q.; Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008). doi:10.1007/s11671-008-9174-9

    Article  Google Scholar 

  19. Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016). doi:10.2147/NSA.S99986

    Article  Google Scholar 

  20. Wu, W.; Xiao, X.; Zhang, S.; Zhou, J.; Fan, L.; Ren, F.; Jiang, C.: Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J. Phys. Chem. C 114, 16092–16103 (2010). doi:10.1021/jp1010154

    Article  Google Scholar 

  21. Tartaj, P.; Morales, M.P.; Gonzalez-Carreño, T.; Veintemillas-Verdaguer, S.; Serna, C.J.: The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv. Mater. 23, 5243–5249 (2011). doi:10.1002/adma.201101368

    Article  Google Scholar 

  22. Qurashi, A.; Zhong, Z.; Alam, M.W.: Synthesis and photocatalytic properties of \(\upalpha \)-Fe\(_2\)O\(_3\) nanoellipsoids. Solid State Sci. 12, 1516–1519 (2010). doi:10.1016/j.solidstatesciences.2010.05.001

    Article  Google Scholar 

  23. Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 23501 (2015). doi:10.1088/1468-6996/16/2/023501

    Article  Google Scholar 

  24. Chirita, M.; Grozescu, I.: \(\text{ Fe }_{2}\text{ O }_{3}\)-nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem. Bull. Polit. Univ. Timsisoara 54, 1–8 (2009)

    Google Scholar 

  25. Ding, Y.; Morber, J.R.; Snyder, R.L.; Wang, Z.L.: Nanowire structural evolution from Fe\(_3\)O\(_4\) to \(\upvarepsilon \)-Fe\(_2\)O\(_3\). Adv. Funct. Mater. 17, 1172–1178 (2007). doi:10.1002/adfm.200601024

    Article  Google Scholar 

  26. Chung, Y.; Lim, S.K.; Kim, C.K.; Kim, Y.-H.; Yoon, C.S.: Synthesis of \(\upgamma \)-\(\text{ Fe }_{2}\text{ O }_{3}\) nanoparticles embedded in polyimide. J. Magn. Magn. Mater. 272–276, E1167–E1168 (2004). doi:10.1016/j.jmmm.2003.12.217

    Article  Google Scholar 

  27. Li, F.; Luo, S.; Sun, Z.; Bao, X.; Fan, L.-S.: Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations. Energy Environ. Sci. 4, 3661 (2011). doi:10.1039/c1ee01325d

    Article  Google Scholar 

  28. Darken, L.S.; Gurry, R.W.: The system iron–oxygen. I. The Wüstite field and related equilibria. J. Am. Chem. Soc. 67, 1398–1412 (1945). doi:10.1021/ja01224a050

    Article  Google Scholar 

  29. Teja, A.S.; Koh, P.-Y.: Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009). doi:10.1016/j.pcrysgrow.2008.08.003

    Article  Google Scholar 

  30. Yamaura, M.; Camilo, R.; Sampaio, L.; Macêdo, M.; Nakamura, M.; Toma, H.: Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210–217 (2004). doi:10.1016/j.jmmm.2004.01.094

    Article  Google Scholar 

  31. Ceylan, A.; Baker, C.C.; Hasanain, S.K.; Ismat Shah, S.: Effect of particle size on the magnetic properties of core–shell structured nanoparticles. J. Appl. Phys. 100, 34301 (2006). doi:10.1063/1.2219691

    Article  Google Scholar 

  32. Levy, M.; Quarta, A.; Espinosa, A.; Figuerola, A.; Wilhelm, C.; García-Hernández, M.; Genovese, A.; Falqui, A.; Alloyeau, D.; Buonsanti, R.; Cozzoli, P.D.; García, M.A.; Gazeau, F.; Pellegrino, T.: Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem. Mater. 23, 4170–4180 (2011). doi:10.1021/cm201078f

    Article  Google Scholar 

  33. Guardia, P.; Labarta, A.; Batlle, X.: Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J. Phys. Chem. C 115, 390–396 (2011). doi:10.1021/jp1084982

    Article  Google Scholar 

  34. Bharathi, S.; Nataraj, D.; Seetha, M.; Mangalaraj, D.; Ponpandian, N.; Masuda, Y.; Senthil, K.; Yong, K.: Controlled growth of single-crystalline, nanostructured dendrites and snowflakes of \(\upalpha \)-Fe\(_2\)O\(_3\): influence of the surfactant on the morphology and investigation of morphology dependent magnetic properties. CrystEngComm 12, 373–382 (2010). doi:10.1039/B910550F

    Article  Google Scholar 

  35. Wang, Y.; Xia, Y.: Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 4, 2047–2050 (2004). doi:10.1021/nl048689j

    Article  Google Scholar 

  36. Liu, J.; Wu, Z.; Tian, Q.; Wu, W.; Xiao, X.: Shape-controlled iron oxide nanocrystals: synthesis, magnetic properties and energy conversion applications. CrystEngComm 18, 6303–6326 (2016). doi:10.1039/C6CE01307D

    Article  Google Scholar 

  37. Riasat, R.; Nie, G.: Synthesis and characterization of nontoxic hollow iron oxide (\(\upalpha \)-\(\text{ Fe }_{2}\text{ O }_{3})\) nanoparticles using a simple hydrothermal strategy. J. Nanomater. 2016, 1–7 (2016). doi:10.1155/2016/1920475

    Article  Google Scholar 

  38. Khalil, M.I.: Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab. J. Chem. 8, 279–284 (2015). doi:10.1016/j.arabjc.2015.02.008

    Article  Google Scholar 

  39. Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Xu, W.; Zhang, Q.; Volinsky, A.A.: Fe\(_3\)O\(_4\) magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett. 65, 1882–1884 (2011). doi:10.1016/j.matlet.2011.03.065

    Article  Google Scholar 

  40. Pandey, S.; Mishra, S.B.: Sol–gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications. J. Sol–Gel Sci. Technol. 59, 73–94 (2011). doi:10.1007/s10971-011-2465-0

    Article  Google Scholar 

  41. Florini, N.; Barrera, G.; Tiberto, P.; Allia, P.; Bondioli, F.: Nonaqueous sol–gel synthesis of magnetic iron oxides nanocrystals. J. Am. Ceram. Soc. (2013). doi:10.1111/jace.12469

  42. Lemine, O.M.; Omri, K.; Zhang, B.; El Mir, L.; Sajieddine, M.; Alyamani, A.; Bououdina, M.: Sol–gel synthesis of 8nm magnetite (Fe\(_3\)O\(_4\)) nanoparticles and their magnetic properties. Superlattices Microstruct. 52, 793–799 (2012). doi:10.1016/j.spmi.2012.07.009

    Article  Google Scholar 

  43. Unni, M.; Uhl, A.M.; Savliwala, S.; Savitzky, B.H.; Dhavalikar, R.; Garraud, N.; Arnold, D.P.; Kourkoutis, L.F.; Andrew, J.S.; Rinaldi, C.: Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11, 2284–2303 (2017). doi:10.1021/acsnano.7b00609

    Article  Google Scholar 

  44. Kozakova, Z.; Kuritka, I.; Kazantseva, N.E.; Babayan, V.; Pastorek, M.; Machovsky, M.; Bazant, P.; Saha, P.: The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties. Dalt. Trans. 44, 21099–21108 (2015). doi:10.1039/C5DT03518J

    Article  Google Scholar 

  45. Khan, I.; Ali, S.; Mansha, M.; Qurashi, A.: Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO\(_4\)) and their solar-driven water splitting application. Ultrason. Sonochem. 36, 386–392 (2017). doi:10.1016/j.ultsonch.2016.12.014

  46. Zhuang, L.; Zhang, W.; Zhao, Y.; Shen, H.; Lin, H.; Liang, J.: Preparation and characterization of Fe\(_3\)O\(_4\) particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Sci. Rep. 5, 9320 (2015). doi:10.1038/srep09320

    Article  Google Scholar 

  47. Khan, I.; Abdalla, A.; Qurashi, A.: Synthesis of hierarchical WO\(_3\) and Bi\(_2\)O\(_3\)/WO\(_3\) nanocomposite for solar-driven water splitting applications. Int. J. Hydrogen Energy 42, 3431–3439 (2017). doi:10.1016/j.ijhydene.2016.11.105

    Article  Google Scholar 

  48. Mansha, M.; Khan, I.; Ullah, N.; Qurashi, A.: Synthesis, characterization and visible-light-driven photoelectrochemical hydrogen evolution reaction of carbazole-containing conjugated polymers. Int. J. Hydrogen Energy. (2017). doi:10.1016/j.ijhydene.2017.02.053

    Google Scholar 

  49. Khan, I.; Ibrahim, A.A.M.; Sohail, M.; Qurashi, A.: Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for photoelectrochemical water splitting. Ultrason. Sonochem. 37, 669–675 (2017). doi:10.1016/j.ultsonch.2017.02.029

    Article  Google Scholar 

  50. Iqbal, N.; Khan, I.; Yamani, Z.H.; Qurashi, A.: Sonochemical assisted solvothermal synthesis of gallium oxynitride nanosheets and their solar-driven photoelectrochemical water-splitting applications. Sci. Rep. 6, 32319 (2016). doi:10.1038/srep32319

    Article  Google Scholar 

  51. Iqbal, N.; Khan, I.; Yamani, Z.H.A.; Qurashi, A.: A facile one-step strategy for in-situ fabrication of WO\(_3\)-BiVO\(_4\) nanoarrays for solar-driven photoelectrochemical water splitting applications. Sol. Energy 144, 604–611 (2017). doi:10.1016/j.solener.2017.01.057

    Article  Google Scholar 

  52. Mansha, M.; Khan, I.; Ullah, N.; Qurashi, A.; Sohail, M.: Visible-light driven photocatalytic oxygen evolution reaction from new poly(phenylene cyanovinylenes). Dye Pigment. (2017). doi:10.1016/j.dyepig.2017.04.028

    Google Scholar 

  53. Avasare, V.; Zhang, Z.; Avasare, D.; Khan, I.; Qurashi, A.: Room-temperature synthesis of TiO\(_2\) nanospheres and their solar driven photoelectrochemical hydrogen production. Int. J. Energy Res. 39, 1714–1719 (2015). doi:10.1002/er.3372

    Article  Google Scholar 

  54. Sivula, K.; Le Formal, F.; Grätzel, M.; Le Formal, F.; Grätzel, M.: Solar water splitting: progress using hematite (\(\upalpha \)-Fe\(_2\)O\(_3\)) photoelectrodes. ChemSusChem 4, 432–449 (2011). doi:10.1002/cssc.201000416

    Article  Google Scholar 

  55. Charvin, P.; Abanades, S.; Flamant, G.; Lemort, F.: Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy 32, 1124–1133 (2007). doi:10.1016/j.energy.2006.07.023

    Article  Google Scholar 

  56. Gokon, N.; Murayama, H.; Umeda, J.; Hatamachi, T.; Kodama, T.: Monoclinic zirconia-supported Fe\(_3\)O\(_4\) for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400–\(1600^{\circ }\text{ C }\). Int. J. Hydrogen Energy 34, 1208–1217 (2009). doi:10.1016/j.ijhydene.2008.12.007

    Article  Google Scholar 

  57. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010). doi:10.1021/cr900356p

    Article  Google Scholar 

  58. Grätzel, M.; Bach, U.; Lupo, D.; Comte, P.; Moser, J.E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.: Solid-state dye-sensitized mesoporous TiO\(_2\) solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998). doi:10.1038/26936

    Article  Google Scholar 

  59. Agarwala, S.; Lim, Z.H.; Nicholson, E.; Ho, G.W.: Probing the morphology-device relation of Fe\(_2\)O\(_3\) nanostructures towards photovoltaic and sensing applications. Nanoscale 4, 194–205 (2012). doi:10.1039/C1NR10856E

    Article  Google Scholar 

  60. Manikandan, A.; Saravanan, A.; Antony, S.A.; Bououdina, M.: One-pot low temperature synthesis and characterization studies of nanocrystalline \(\upalpha \)-Fe\(_2\)O\(_3\) based dye sensitized solar cells. J. Nanosci. Nanotechnol. 15, 4358–4366 (2015). doi:10.1166/jnn.2015.9804

    Article  Google Scholar 

  61. Wang, W.; Pan, X.; Liu, W.; Zhang, B.; Chen, H.; Fang, X.; Yao, J.; Dai, S.; Comte, P.; Pechy, P.; Gratzel, M.: FeSe\(_2\) films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 50, 2618 (2014). doi:10.1039/c3cc49175g

    Article  Google Scholar 

  62. Wang, L.; Shi, Y.; Zhang, H.; Bai, X.; Wang, Y.; Ma, T.: Iron oxide nanostructures as highly efficient heterogeneous catalysts for mesoscopic photovoltaics. J. Mater. Chem. A. 2, 15279 (2014). doi:10.1039/C4TA03727H

    Article  Google Scholar 

  63. Albo, J.; Alvarez-Guerra, M.; Castaño, P.; Irabien, A.: Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 17, 2304–2324 (2015). doi:10.1039/C4GC02453B

    Article  Google Scholar 

  64. Graves, C.; Ebbesen, S.D.; Mogensen, M.; Lackner, K.S.: Sustainable hydrocarbon fuels by recycling CO\(_2\) and H\(_2\)O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 15, 1–23 (2011). doi:10.1016/j.rser.2010.07.014

    Article  Google Scholar 

  65. Abanades, S.; Villafan-Vidales, I.: CO\(_2\) valorisation based on Fe\(_3\)O\(_4\)/FeO thermochemical redox reactions using concentrated solar energy. Int. J. Energy Res. 37, 598–608 (2013). doi:10.1002/er.1953

    Article  Google Scholar 

  66. Fan, G.; Luo, S.; Wu, Q.; Fang, T.; Li, J.; Song, G.; Hyeon, T.: \(\text{ ZnBr }_{2}\) supported on silica-coated magnetic nanoparticles of \(\text{ Fe }_{3}\text{ O }_{4}\) for conversion of \(\text{ CO }_{2}\) to diphenyl carbonate. RSC Adv. 5, 56478–56485 (2015). doi:10.1039/C5RA07431B

    Article  Google Scholar 

  67. Wei, S.; Wang, Q.; Zhu, J.; Sun, L.; Lin, H.; Guo, Z.: Multifunctional composite core-shell nanoparticles. Nanoscale 3, 4474–4502 (2011). doi:10.1039/C1NR11000D

    Article  Google Scholar 

  68. Yoon, T.-J.; Lee, W.; Oh, Y.-S.; Lee, J.-K.: Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J. Chem. 27, 227–229 (2003). doi:10.1039/B209391J

    Article  Google Scholar 

  69. Zolfigola, M.A.; Nasrabadia, R.A.; Bagherya, S.; Khakyzadehb, V.; Azizian, S.: Applications of a novel nano magnetic catalyst in the synthesis of1,8-dioxo-octahydroxanthene and dihydropyrano[2,3-c] pyrazolederivatives. J. Mol. Catal. A Chem. 418–419, 54–67 (2016)

    Article  Google Scholar 

  70. Zolfigol, M.A.; Azadbakht, T.; Khakyzadeh, V.; Nejatyamid, R.; Perrinb, D.M.: C(sp2)–C(sp2) cross coupling reactions catalyzed by an active and highly stable magnetically separable Pd-nanocatalyst in aqueous media. RSC Adv. 4, 40036–40042 (2014)

    Article  Google Scholar 

  71. Baharfar, R.; Mohajer, M.: Synthesis and characterization of immobilized lipase on Fe\(_3\)O\(_4\) nanoparticles as nano biocatalyst for the synthesis of benzothiazepine and spirobenzothiazine chroman derivatives. Catal. Lett. 146, 1729–1742 (2016)

    Article  Google Scholar 

  72. Meshkani, F.; Rezaei, M.: Preparation of mesoporous nanocrystalline iron based catalysts for high temperature water gas shift reaction: effect of preparation factors. Chem. Eng. J. 260, 107–116 (2015)

    Article  Google Scholar 

  73. Dehghani, F.; Sardarian, A.R.; Esmaeilpour, M.: Salen complex of Cu(II) supported on superparamagnetic Fe\(_3\)O\(_4\)@SiO\(_2\) nanoparticles: an efficient and recyclable catalyst for synthesis of 1-and 5-substituted 1h-tetrazoles. J. Org. Chem. 743, 87–96 (2013)

    Article  Google Scholar 

  74. Esmaeilpour, M.; Sardarian, A.R.; Javidi, J.: Schiff base complex of metal ions supported on superparamagnetic Fe\(_3\)O\(_4\)@SiO\(_2\) nanoparticles: an efficient, selective and recyclable catalyst for synthesis of 1,1-diacetates from aldehydes under solvent-free conditions. Appl. Catal. A 445–446, 359–367 (2012)

    Article  Google Scholar 

  75. Naeimi, H.; Nazifi, Z.A.: Highly efficient nano-Fe\(_3\)O\(_4\) encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives. J. Nanopart. Res. 15, 2026 (2013)

    Article  Google Scholar 

  76. Ucoski, G.M.; Nunes, F.S.; DeFreitas-Silva, G.; Idemori, Y.M.; Nakagaki, S.: Metalloporphyrins immobilized on silica-coated Fe\(_3\)O\(_4\) nanoparticles: magnetically recoverable catalysts for the oxidation of organic substrates. Appl. Catal. A 459, 121–130 (2013)

    Article  Google Scholar 

  77. Rayati, S.; Abdolalian, P.: Heterogenization of a molybdenum schiff base complex as a magnetic nanocatalyst: an eco-friendly, efficient, selective and recyclable nanocatalyst for the oxidation of alkenes. C. R. Chim. 16, 814–820 (2013)

    Article  Google Scholar 

  78. Rhodes, C.; Hutchings, G.J.: Studies of the role of the copper promoter in the iron oxide/chromia high temperature water gas shift catalyst. Phys. Chem. Chem. Phys. 5, 2719 (2003)

    Article  Google Scholar 

  79. Gawade, P.; Mirkelamoglu, B.; Tan, B.; Ozkan, U.S.: Cr-free Fe-based water-gas shift catalysts prepared through propylene oxide-assisted sol–gel technique. J. Mol. Catal. A Chem. 321, 61–70 (2010)

    Article  Google Scholar 

  80. Yan, Q.; Street, J.; Yu, F.: Synthesis of carbon-encapsulated iron nanoparticles from wood derived sugars by hydrothermal carbonization (HTC) and their application to convert bio-syngas into liquid hydrocarbons. Biomass Bioenergy 83, 85–95 (2015)

    Article  Google Scholar 

  81. Galvis, H.M.T.; Bitter, J.H.; Khare, C.B.; Ruitenbeek, M.; Dugulan, A.I.; De Jong, K.P.: Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335, 835 (2012)

    Article  Google Scholar 

  82. Pour, A.N.; Taghipoor, S.; Shekarriz, M.; Shahri, S.M.; Zamani, Y.: Fischere–Tropsch synthesis with Fe/Cu/La/\(\text{ SiO }_{2}\) nano-structured catalyst. J. Nanosci. Nanotechnol. 9, 4425–4433 (2009)

    Article  Google Scholar 

  83. Li, X.; Lei, Y.; Li, X.; Song, S.; Wang, C.; Zhang, H.: Morphology-controlled synthesis of a-Fe\(_2\)O\(_3\) nanostructures with magnetic property and excellent electrocatalytic activity for H2O2. Solid StateSci. 13, 2129–2136 (2011)

    Google Scholar 

  84. Rafiee, E.; Joshaghania, M.; Abadi, P.G.S.: Shape-dependent catalytic activity of Fe\(_3\)O\(_4\) nanostructures under the influence of an external magnetic field for multicomponent reactions in aqueous media. R. Soc. Chem. Adv. 5, 74091–74101 (2015)

    Google Scholar 

  85. Byrne, S.J.; Corr, S.A.; Gun’ko, Y.K.; Kelly, J.M.; Brougham, D.F.; Ghosh, S.: Magnetic nanoparticle assemblies on denatured DNA show unusual magnetic relaxivity and potential applications for MRI. Chem. Commun. 22, 2560–2561 (2004)

    Article  Google Scholar 

  86. Nasongkla, N.; Bey, E.; Ren, J.; Ai, H.; Khemtong, C.; Guthi, J.S.; Chin, S.-F.; Sherry, A.D.; Boothman, D.A.; Gao, J.: Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006)

    Article  Google Scholar 

  87. Figuerola, A.; Di Corato, R.; Manna, L.; Pellegrino, T.: From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol. Res. 62(2), 126–143 (2010)

    Article  Google Scholar 

  88. Dobson, J.: Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006)

    Article  Google Scholar 

  89. Ribeiro, G.A.P.: As propriedades magnéticas da matéria: um primeiro contato. Revista Brasileira de Ensino de Física 22(3), 299–305 (2000)

    Google Scholar 

  90. Salata, O.V.: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2(1), 3 (2004)

    Article  Google Scholar 

  91. Freitas, J.C.D.; Branco, R.M.; Lisboa, I.G.O.; Da Costa, T.P.; Campos, M.G.N.; Júnior, M.J.; Marques, R.F.C.: Magnetic nanoparticles obtained by homogeneous coprecipitation sonochemically assisted. Mater. Res. 18(Sup 2), 220–224 (2015)

    Article  Google Scholar 

  92. Musee, N.: Nanowastes and the environment: potential new waste management paradigm. Environ. Int. 37(1), 112–128 (2011)

    Article  Google Scholar 

  93. Hansen, S.F; Baun, A; Michelson, E.S.; Kamper, A; Borling, P; Stuer-Lauridsen, F: Nanomaterials in consumer products. Nanomater. Risks Benefits 359–367 (2009)

  94. Bandyopadhyay, S.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.: Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ. Eng. Sci. 30(3), 118–125 (2013)

    Article  Google Scholar 

  95. Nadiminti, P.P.; Dong, Y.D.; Sayer, C.; Hay, P.; Rookest, J.E.; Boyd, B.J.; Cahill, D.M.: Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl. Mater. Interfaces 5(5), 1818–1826 (2013)

    Article  Google Scholar 

  96. Delgado-Ramos, G.C.: Nanotechnology in Mexico: global trends and national implications for policy and regulatory issues. Technol. Soc. 37(1), 4–15 (2014)

    Article  Google Scholar 

  97. Safari, J.; Zarnegar, Z.: Advanced drug delivery systems: nanotechnology of health design: a review. J. Saudi Chem. Soc. 18(2), 85–99 (2014)

    Article  Google Scholar 

  98. Neto, O.P.V.: Intelligent computational nanotechnology: the role of computational intelligence in the development of nanoscience and nanotechnology. J. Comput. Theor. Nanosci. 11(4), 928–944 (2014)

    Article  Google Scholar 

  99. Dutschk, V.; Karapantsios, T.; Liggieri, L.; McMillan, N.; Miller, R.; Starov, V.M.: Smart and green interfaces: from single bubbles/drops to industrial environmental and biomedical applications. Adv. Colloid Interface Sci. 209, 109–126 (2014)

    Article  Google Scholar 

  100. Al-Halafi, A.M.: Nanocarriers of nanotechnology in retinal diseases. Saudi J. Ophthalmol. 28(4), 304–309 (2014)

    Article  Google Scholar 

  101. Lombi, E; Nowack, B; Baun, A; McGrath, S.P.: Evidence for effects of manufactured nanomaterials on crops is inconclusive. Proc. Natl. Acad. Sci. USA 109(49), e3336 (2012)

  102. Nevius, B.A.; Chen, Y.P.; Ferry, J.L.; Decho, A.W.: Surface functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology 21(8), 2205–2213 (2012)

    Article  Google Scholar 

  103. Bagheri, H.; Ayazi, Z.; Es’haghi, A.; Aghakhani, A.: Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides. J. Chromatogr. A 1222, 13–21 (2012)

    Article  Google Scholar 

  104. Ghormade, V.; Deshpande, M.V.; Paknikar, K.M.: Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29(6), 792–803 (2011)

    Article  Google Scholar 

  105. Khiew, P.; Chiu, W.; Tan, T.; Radiman, S.; Abd-Shukor, R.; Chia, C.H.: Capping effect of palm-oil based organometallic ligand towards the production of highly monodispersed nanostructured material. in: Palm Oil: Nutrition, Uses and Impacts, pp. 189–219. Nova Science (2011)

  106. Aslani, F.; Bagheri, S.; Julkapli, N.M.; Juraimi, A.S.; Hashemi, F.S.G.; Baghdadi, A.: Effects of engineered nanomaterials on plants growth: an overview. Sci. World J. 2014, 28 (2014). doi:10.1155/2014/641759

  107. Elliott, K.C.: Nanomaterials and the precautionary principle. Environ. Health Perspect. 119(6), A240–A245 (2011)

    Article  Google Scholar 

  108. Lid’en, G.: The European Commission tries to define nanomaterials. Ann. Occup. Hyg. 55(1), 1–5 (2011)

    Google Scholar 

  109. Potera, C.: Nanomaterials: transformation of silver nanoparticles in sewage sludge. Environ. Health Perspect. 118(12), A526–A527 (2010)

    Article  Google Scholar 

  110. Safiuddin, M.; Gonzalez, M.; Cao, J.W.; Tighe, S.L.: State of-the-art report on use of nanomaterials in concrete. Int. J. Pavement Eng. 15(10), 940–949 (2014)

    Article  Google Scholar 

  111. Zhou, X.; Torabi, M.; Lu, J.; Shen, R.; Zhang, K.: Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl. Mater. Interfaces 6(5), 3058–3074 (2014)

    Article  Google Scholar 

  112. Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)

    Article  Google Scholar 

  113. Lang, X.; Hirata, A.; Fujita, T.; Chen, M.: Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6(4), 232–236 (2011)

    Article  Google Scholar 

  114. Elmer, H.W.; White, C.J.: The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infected soil or soilless medium. Environ. Sci. Nano 3, 1072–1079 (2016)

    Article  Google Scholar 

  115. Pariona, N.; Martinez, A.I.; Hdz-García, H.M.; Cruz, L.A.; Hernandez-Valdes, A.: Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J. Biol. Sci. 24(7), 1547–1554 (2017)

  116. Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T.; Zhu, S.: Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachishypogaea). Front. Plant Sci. 7, 815 (2016)

    Article  Google Scholar 

  117. Li, J.; Yi, Y.; Cheng, X.; Zhang, D.; Irfan, M.: Study on the effect of magnetic field treatment of newly isolated Paenibacillus sp. Bot. Stud. 56, 2 (2015)

    Article  Google Scholar 

  118. Zhongzhou, Yang; Chen, Jing; Dou, Runzhi; Gao, Xiang; Mao, Chuanbin; Wang, Li: Assesment of phytotoxicity of metal oxide nanoparticles on two crop plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). Int. J. Environ. Res. Public Health 12, 15100–15109 (2015)

    Article  Google Scholar 

  119. Niederberger, M.: Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40(9), 793–800 (2007)

    Article  Google Scholar 

  120. Franke, M.E.; Koplin, T.J.; Simon, U.: Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1), 36–50 (2006)

    Article  Google Scholar 

  121. Zhu, H.; Han, J.; Xiao, J.Q.; Jin, Y.: Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10(6), 713–717 (2008)

    Article  Google Scholar 

  122. Besson-Bard, A.; Gravot, A.; Richaud, P.; Auroy, P.; Duc, C.; Gaymard, F.; Taconnat, L.; Renou, J.P.; Pugin, A.; Wendehenne, D.: Nitric oxide contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol. 149(3), 1302–1315 (2009)

    Article  Google Scholar 

  123. Stephan, M.K.: Iron oxide dissolution and solubility in the presence of sidrophores. Aquat. Sci. 66(1), 3–18 (2004)

    Article  Google Scholar 

  124. Bombin, S.; LeFebvre, M.; Sherwood, J.; Xu, Y.; Bao, Y.; Ramonell, K.M.: Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int. J. Mol. Sci. 16(10), 24174–24193 (2015)

    Article  Google Scholar 

  125. Li, J.; Chang, P.R.; Huang, J.; Wang, Y.; Yuan, H.; Ren, H.: Physiological effect of magnetic iron oxide nanoparticles toward watermelon. J. Nanosci. Nanotechnol. 13, 5561–5567 (2013)

    Article  Google Scholar 

  126. O’Brien, R.D.: Toxic Phosphorus Esters. Chemistry, Metabolism, and Biological Effects. Academic Press, New York (1960)

    Google Scholar 

  127. Chauhan, N.; Pundir, C.S.: An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Anal. Chim. Acta 701, 66–74 (2011)

    Article  Google Scholar 

  128. Bhat, S.S.; Qurashi, A.; Khanday, F.A.: ZnO nanostructures based biosensors for cancer and infectious disease applications: perspectives, prospects and promises. Trends Anal. Chem. 86, 1–13 (2017)

    Article  Google Scholar 

  129. Jordan, A.; Wust, P.; Scholz, R.; Tesche, B.; Fahling, H.; Mitrovics, T.; Vogl, T.; Cervos-Navarro, J.; Felix, R.: Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperthermia 12(6), 705–722 (1996)

    Article  Google Scholar 

  130. Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R.: Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116(9), 5338–5431 (2016)

    Article  Google Scholar 

  131. Parray, A.A.; Baba, R.A.; Bhat, H.F.; Wani, L.; Mokhdomi, T.A.; Mushtaq, U.; Bhat, S.S.; Kirmani, D.; Kuchay, S.; Wani, M.M.; Khanday, F.A.: MKK6 is upregulated in human esophageal, stomach, and colon cancers. Cancer Invest. 32(8), 416–422 (2014)

    Article  Google Scholar 

  132. Bashir, M.; Kirmani, D.; Bhat, H.F.; Baba, R.A.; Hamza, R.; Naqash, S.; Wani, N.A.; Andrabi, K.I.; Zargar, M.A.; Khanday, F.A.: P66shc and its downstream Eps8 and Rac1 proteins are upregulated in esophageal cancers. Cell Commun. Signal. 8, 13 (2010)

    Article  Google Scholar 

  133. Mushtaq, U.; Baba, R.A.; Parray, A.A.; Bhat, H.F.; Saleem, S.S.; Manzoor, U.; Kuchay, S.; Wani, L.; Khanday, F.A.: Mitogen activated protein kinase kinase-4 upregulation is a frequent event in human stomach and colon cancers. J. Enzymol. Metabol. 1(1), 103 (2014)

    Google Scholar 

  134. Kemmner, W.; Moldenhauer, G.; Schlag, P.; Brossmer, R.: Separation of tumor cells from a suspension of dissociated human colorectal carcinoma tissue by means of monoclonal antibody-coated magnetic beads. J. Immunol. Methods 147(2), 197–200 (1992)

    Article  Google Scholar 

  135. Kiessling, A.A., Anderson , S.C.: Human Embryonic Stem Cells. Jones and Bartlett, Boston, MA (2003)

  136. Bulte, J.W.; Douglas, T.; Witwer, B.; Zhang, S.C.; Strable, E.; Lewis, B.K.; Zywicke, H.; Miller, B.; van Gelderen, P.; Moskowitz, B.M.; Duncan, I.D.; Frank, J.A.: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141–1147 (2001)

    Article  Google Scholar 

  137. Tosi, G.; Costantino, L.; Rivasi, F.; Ruozi, B.; Leo, E.; Vergoni, A.V.; Tacchi, R.; Bertolini, A.; Vandelli, M.A.; Forni, F.: Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J. Control. Release 122, 1–9 (2007)

    Article  Google Scholar 

  138. Vail, D.M.; Amantea, M.A.; Colbern, G.T.; Martin, F.J.; Hilger, R.A.; Working, P.K.: Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin. Oncol. 31, 16–35 (2004)

    Article  Google Scholar 

  139. Wang, Y.; Cui, H.; Li, K.; Sun, C.; Du, W.; Cui, J.; Zhao, X.; Chen, W.: A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One 9, e102886 (2014)

  140. Krotz, F.; Wit, C.; Sohn, H.Y.; Zahler, S.; Gloe, T.; Pohl, U.; Plank, C.: Magnetofection-a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol. Ther. 7, 700–710 (2003)

    Article  Google Scholar 

  141. Miller, M.M.; Prinz, G.A.; Cheng, S.F.; Bounnak, S.: Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Appl. Phys. Lett. 81, 2211 (2002)

    Article  Google Scholar 

  142. Nor, N.M.; Lockman, Z.; Razak, K.A.: Study of ITO glass electrode modified with iron oxide nanoparticles and Nafion for glucose biosensor application. Procedia Chem. 3, 116 (2016)

    Google Scholar 

  143. Kaushik, A.; Khan, R.; Solanki, P.R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B.D.: Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron. 24, 676–683 (2008)

    Article  Google Scholar 

  144. AlSalhi, A.M.S.; Atif, M.; Ansari, A.A.; Israr, M.Q.; Sadaf, J.R.; Ahmed, E.; Nur, O.; Willander, M.: Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles. J. Phys. Conf. Ser. 414, 012024 (2013)

    Article  Google Scholar 

  145. Hutter, E.; Cha, S.; Liu, J.-F.; Park, J.; Yi, J.; Fendler, J.H.; Roy, D.: Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging. J. Phys. Chem. B 105, 8–12 (2001)

    Article  Google Scholar 

  146. Ansari, M.I.H.; Hassan, S.; Qurashi, A.; Khanday, F. A.: Microfluidic-integrated DNA nanobiosensors. Biosens. Bioelectron. 85, 247–260 (2016)

  147. Ambashta, R.D.; Sillanpaa, M.: Water purification using magnetic assistance: a review. J. Hazard. Mater. 180, 38–49 (2010)

    Article  Google Scholar 

  148. Pradeep, T.: Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517, 6441–6478 (2009)

    Article  Google Scholar 

  149. Hu, J.; Lo, M.C.I.; Chen, G.H.: Performance and mechanism of chromate (VI) adsorption by \(\delta \)-FeOOH-coated maghemite (\(\upgamma \)-\(\text{ Fe }_{2}\text{ O }_{3})\) nanoparticles. Sep. Purif. Technol. 58, 76–82 (2007)

    Article  Google Scholar 

  150. Mirabedini, M.; Kassaee, M.Z.; Poorsadeghi, S.: Novel magnetic chitosan hydrogel film, cross-linked with glyoxal as an efficient adsorbent for removal of toxic Cr(VI) from water. Arab. J. Sci. Eng. 42, 115–124 (2017)

    Article  Google Scholar 

  151. Mahdavian, A.R.; Mirrahimi, M.A.S.: Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J. 159, 264–271 (2010)

    Article  Google Scholar 

  152. Nadejdea, C.; Neamtua, M.; Schneiderb, R.J.; Hodoroabab, V.D.; Ababeic, G.; Panneb, U.: Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts. Appl. Surf. Sci. 352, 42–48 (2015)

    Article  Google Scholar 

  153. Bhattacharya, K.; Parasar, D.; Mondal, B.; Deb, P.: Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals. Sci. Rep. 25, 1–9 (2015)

    Google Scholar 

  154. Rauf, M.A.; Ali, L.; Sadig, M.S.A.Y.; Ashraf, S.S.; Hisaindee, S.: Comparative degradation studies of malachite green and thiazole yellow G and their binary mixture using UV/\(\text{ H }_{2}\text{ O }_{2}\). Desalin. Wat. Treat. 57(18), 8336–8342 (2016)

    Article  Google Scholar 

  155. Khataee, A.; Gohari, S.; Fathinia, M.: Modification of magnetite ore as heterogeneous nanocatalyst for degradation of three textile dyes: simultaneous determination using MCR-ALS, process optimization and intermediate identification. J. Taiwan Inst. Chem. Eng. 65, 172–184 (2016)

    Article  Google Scholar 

  156. Khataee, A.; Taseidifar, M.; Khorram, S.; Sheydaei, M.; Joo, S.W.: Preparation of nanostructured magnetite with plasma for degradation of a cationic textile dye by the heterogeneous Fenton process. J. Taiwan Inst. Chem. Eng. 53, 132–139 (2015)

    Article  Google Scholar 

  157. Khosravi, M.; Azizian, S.: Synthesis of \(\text{ Fe }_{3}\text{ O }_{4}\) flower-like hierarchical nanostructures with high adsorption performance toward dye molecules. Colloids Surface Physicochem. Eng. Asp. 482, 438–446 (2015)

    Article  Google Scholar 

  158. Jiao, C.; Wang, Y.; Li, M.; Wu, Q.; Wang, C.; Wang, Z.: Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution. J. Magn. Magn. Mater. 407, 24–30 (2016)

    Article  Google Scholar 

  159. Jiang, X.; Yu, J.; Chen, X.; Wang, D.; Liu, L.: Adsorption and removal of malachite green from aqueous solution using magnetic cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids Surface Physicochem. Eng. Asp. 66, 166–173 (2015)

    Google Scholar 

  160. Le, T.H.; Kim, S.J.; Bang, S.H.; Lee, S.H.; Choi, Y.W.; Kim, P.; Kim, Y.H.; Min, J.: Phenol degradation activity and reusability of Corynebacterium glutamicum coated with \(\text{ NH }_{2}\)-functionalized silica-encapsulated \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles. Bioresour. Technol. 104, 795–798 (2012)

    Article  Google Scholar 

  161. Zhang, S.X.; Niu, H.Y.; Hu, Z.J.; Cai, Y.Q.; Shi, Y.L.: Nanomaterials in pollution trace detection and environmental improvement. J. Chromatogr. A 1217, 4757–4764 (2010)

    Article  Google Scholar 

  162. Huang, Y.; Fulton, A.N.; Keller, A.A.: Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Sci. Total Environ. 571, 1029–1036 (2016)

    Article  Google Scholar 

  163. Abdullah, M.M.S.; Al-Lohedan, H.A.; Atta, A.M.: Novel magnetic iron oxide nanoparticles coated with sulfonated asphaltene as crude oil spill collectors. RSC Adv. 6, 59242–59249 (2016)

    Article  Google Scholar 

  164. Zhu, X.; Tian, S.; Cai, Z.: Toxicity assessment of iron oxide nanoparticles in Zebrafish (Danio rerio) early life stages. PLoS ONE 7, e46286 (2012)

  165. Barhoumi, L.; Dewez, D.: Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Res. Int. 2013, 647974 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amjad Khalil or Ahsanulhaq Qurashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Khalil, A., Khanday, F. et al. Synthesis, Characterization and Applications of Magnetic Iron Oxide Nanostructures. Arab J Sci Eng 43, 43–61 (2018). https://doi.org/10.1007/s13369-017-2835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2835-1

Keywords

Navigation