Skip to main content

Advertisement

Log in

Data mining and molecular dynamics analysis to detect HIV-1 reverse transcriptase RNase H activity inhibitor

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

HIV-1 is a deadly virus that affects millions of people worldwide. In this study, we aimed to inhibit viral replication by targeting one of the HIV-1 proteins and identifying a new drug candidate. We used data mining and molecular dynamics methods on HIV-1 genomes. Based on MAUVE analysis, we selected the RNase H activity of the reverse transcriptase (R.T) enzyme as a potential target due to its low mutation rate and high conservation level. We screened about 94,000 small molecule inhibitors by virtual screening. We validated the hit compounds' stability and binding free energy through molecular dynamics simulations and MM/PBSA. Phomoarcherin B, known for its anticancer properties, emerged as the best candidate and showed potential as an HIV-1 reverse transcriptase RNase H activity inhibitor. This study presents a new target and drug candidate for HIV-1 treatment. However, in vitro and in vivo tests are required. Also, the effect of RNase H activity on viral replication and the interaction of Phomoarcherin B with other HIV-1 proteins should be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This work has been published as a preprint version (https://www.biorxiv.org/content/10.1101/2021.09.09.459559v1.full) and additional updates are available to the preprint version.

References

  1. Hemelaar J (2012) The origin and diversity of the HIV-1 pandemic. Trends Mol Med 18(3):182–192. https://doi.org/10.1016/j.molmed.2011.12.001

    Article  PubMed  Google Scholar 

  2. WHO. H.I.V. data and statistics. https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics. Accessed 2023

  3. UNAIDS. Global H.I.V. & AIDS statistics. https://www.unaids.org/en/resources/fact-sheet. Accessed 2023

  4. Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J (2008) "The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest 118(4):1244–1254. https://doi.org/10.1172/jci34706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kirchhoff F (2013) H.I.V. Life cycle: overview, pp 1–9

  6. Swanson CM, Malim MH (2008) SnapShot: HIV-1 proteins. Cell 133(4):742. https://doi.org/10.1016/j.cell.2008.05.005

    Article  PubMed  Google Scholar 

  7. Fanales-Belasio E, Raimondo M, Suligoi B, Buttò S (2010) H.I.V. virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita 46(1):5–14. https://doi.org/10.4415/ann_10_01_02

    Article  CAS  PubMed  Google Scholar 

  8. Ruelas DS, Greene WC (2013) An integrated overview of HIV-1 latency. Cell 155(3):519–29. https://doi.org/10.1016/j.cell.2013.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Volberding PA, Deeks SG (2010) Antiretroviral therapy and management of H.I.V. infection. Lancet 376(9734):49–62. https://doi.org/10.1016/s0140-6736(10)60676-9

    Article  PubMed  Google Scholar 

  10. Das D, Georgiadis MM (2004) The crystal structure of the monomeric reverse transcriptase from Moloney Murine Leukemia Virus. Structure 12(5):819–829. https://doi.org/10.1016/j.str.2004.02.032

    Article  CAS  PubMed  Google Scholar 

  11. Ahamad S, Islam A, Ahmad F, Dwivedi N, Hassan MI (2019) 2/3D-QSAR, molecular docking and M.D. simulation studies of FtsZ protein targeting benzimidazoles derivatives. Comput Biol Chem 78:398–413. https://doi.org/10.1016/j.compbiolchem.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  12. Poongavanam V, Kongsted J (2013) Virtual screening models for prediction of HIV-1 RT associated RNase H inhibition. PLoS ONE 8(9):e73478. https://doi.org/10.1371/journal.pone.0073478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shin Y et al (2021) Identification of aristolactam derivatives that act as inhibitors of human immunodeficiency virus type 1 infection and replication by targeting tat-mediated viral transcription. Virol Sin 36(2):254–263. https://doi.org/10.1007/s12250-020-00274-7

    Article  CAS  PubMed  Google Scholar 

  14. Poli G, Granchi C, Rizzolio F, Tuccinardi T (2020) Application of MM-PBSA methods in virtual screening. Molecules. https://doi.org/10.3390/molecules25081971

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gao Y et al (2019) In silico study of 3-hydroxypyrimidine-2,4-diones as inhibitors of H.I.V. RT-associated RNase H using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore models. New J Chem 43(43):17004–17017. https://doi.org/10.1039/C9NJ03353J

    Article  CAS  Google Scholar 

  16. Panwar U, Singh SK (2018) An overview on Zika virus and the importance of computational drug discovery. J Explor Res Pharmacol 3(2):43–51. https://doi.org/10.14218/jerp.2017.00025

    Article  Google Scholar 

  17. Frey KM et al (2022) Structural studies and structure activity relationships for novel computationally designed non-nucleoside inhibitors and their interactions with HIV-1 reverse transcriptase. Front Mol Biosci 9:805187. https://doi.org/10.3389/fmolb.2022.805187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang B, D’Erasmo MP, Murelli RP, Gallicchio E (2016) Free energy-based virtual screening and optimisation of RNase H inhibitors of HIV-1 reverse transcriptase. ACS Omega 1(3):435–447. https://doi.org/10.1021/acsomega.6b00123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seniya C, Yadav A, Khan GJ, Sah NK (2015) In-silico studies show potent inhibition of HIV-1 reverse transcriptase activity by a herbal drug. IEEE/ACM Trans Comput Biol Bioinform 12(6):1355–1364. https://doi.org/10.1109/tcbb.2015.2415771

    Article  CAS  PubMed  Google Scholar 

  20. Panwar U, Singh SK (2021) In silico virtual screening of potent inhibitor to hamper the interaction between HIV-1 integrase and LEDGF/p75 interaction using E-pharmacophore modeling, molecular docking, and dynamics simulations. Comput Biol Chem 93:107509. https://doi.org/10.1016/j.compbiolchem.2021.107509

    Article  CAS  PubMed  Google Scholar 

  21. Kuiken C, Korber B, Shafer RW (2003) HIV sequence databases. AIDS Rev 5(1):52–61

    PubMed  PubMed Central  Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8):1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  24. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403. https://doi.org/10.1101/gr.2289704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5(1):113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  26. Geneious Prime 2023.1 (2023). https://www.geneious.com

  27. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/s0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  29. States DJ, Gish W (1994) Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol 1(1):39–50. https://doi.org/10.1089/cmb.1994.1.39

    Article  CAS  PubMed  Google Scholar 

  30. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimisation, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Himmel DM et al (2009) Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site. Structure 17(12):1625–1635. https://doi.org/10.1016/j.str.2009.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10(12):980. https://doi.org/10.1038/nsb1203-980

    Article  CAS  PubMed  Google Scholar 

  33. Esposito F, Corona A, Tramontano E (2012) HIV-1 reverse transcriptase still remains a new drug target: structure, function, classical inhibitors, and new inhibitors with innovative mechanisms of actions. Mol Biol Int 2012:586401. https://doi.org/10.1155/2012/586401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 54:561–5637. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  35. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773. https://doi.org/10.1110/ps.9.9.1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. The PyMOL molecular graphics system. (015). https://pymol.org/2/

  37. Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Avogadro: an open-source molecular builder and visualisation tool. (2022). https://avogadro.cc/

  39. Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galilee M, Alian A (2018) The structure of FIV reverse transcriptase and its implications for nonnucleoside inhibitor resistance. PLoS Pathogens 14(1):e1006849. https://doi.org/10.1371/journal.ppat.1006849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhagwat M, Meara D, Nossal NG (1997) Identification of residues of T4 RNase H required for catalysis and D.N.A. binding*. J Biol Chem 272(45):28531–28538. https://doi.org/10.1074/jbc.272.45.28531

    Article  CAS  PubMed  Google Scholar 

  42. Dev J et al (2016) "Structural basis for membrane anchoring of HIV-1 envelope spike. Science 353(6295):172–175. https://doi.org/10.1126/science.aaf7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43(W1):W443–W447. https://doi.org/10.1093/nar/gkv315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahamad S, Hassan MI, Dwivedi N (2018) Designing of phenol-based β−carbonic anhydrase1 inhibitors through QSAR, molecular docking, and M.D. simulation approach. 3 Biotech 8(5):256. https://doi.org/10.1007/s13205-018-1278-z

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ahamad S, Kanipakam H, Birla S, Ali MS, Gupta D (2021) Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 Mpro, using molecular docking and dynamics simulation studies. Eur J Pharmacol 890:173664. https://doi.org/10.1016/j.ejphar.2020.173664

    Article  CAS  PubMed  Google Scholar 

  46. Schrödinger Release 2022-3: Maestro (2021). New York. https://www.schrodinger.com/products/maestro

  47. Pelemis S, Tomić B, Armaković S, Armaković S (2019) Reactive properties of ephedrine molecule—a frequently used stimulant

  48. Liu H, Hou T (2016) CaFE: a tool for binding affinity prediction using end-point free energy methods. Bioinformatics 32(14):2216–2218. https://doi.org/10.1093/bioinformatics/btw215

    Article  CAS  PubMed  Google Scholar 

  49. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  50. Singh N, Warshel A (2010) Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Proteins 78(7):1705–1723. https://doi.org/10.1002/prot.22687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  53. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterisation of known drug databases. J Comb Chem 1(1):55–68. https://doi.org/10.1021/cc9800071

    Article  CAS  PubMed  Google Scholar 

  54. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  55. Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43(21):3867–3877. https://doi.org/10.1021/jm000292e

    Article  CAS  PubMed  Google Scholar 

  56. Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like chemical matter. J Med Chem 44(12):1841–1846. https://doi.org/10.1021/jm015507e

    Article  CAS  PubMed  Google Scholar 

  57. Cheng F et al (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11):3099–3105. https://doi.org/10.1021/ci300367a

    Article  CAS  PubMed  Google Scholar 

  58. Xiong G et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5-w14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Waterson AP (1983) Acquired immune deficiency syndrome. Br Med J 286(6367):743–746. https://doi.org/10.1136/bmj.286.6367.743

    Article  CAS  Google Scholar 

  60. Wingert BM, Oerlemans R, Camacho CJ (2018) Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges. J Comput Aided Mol Des 32(1):287–297. https://doi.org/10.1007/s10822-017-0065-y

    Article  CAS  PubMed  Google Scholar 

  61. Sarma H, Mattaparthi VSK (2019) Structure-based virtual screening of high-affinity ATP-competitive inhibitors against human Lemur Tyrosine Kinase-3 (LMTK3) Domain: a novel therapeutic target for breast cancer. Interdiscip Sci 11(3):527–541. https://doi.org/10.1007/s12539-018-0302-7

    Article  CAS  PubMed  Google Scholar 

  62. Méndez-Álvarez D et al (2022) Ligand-based virtual screening, molecular docking, and molecular dynamics of eugenol analogs as potential acetylcholinesterase inhibitors with biological activity against Spodoptera frugiperda. Mol Divers 26(4):2025–2037. https://doi.org/10.1007/s11030-021-10312-5

    Article  CAS  PubMed  Google Scholar 

  63. Fournier PE et al (2006) Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2(1):e7. https://doi.org/10.1371/journal.pgen.0020007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hardison RC (2003) Comparative genomics. PLoS Biol 1(2):E58. https://doi.org/10.1371/journal.pbio.0000058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Clercq E (2004) Nonnucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and future. Chem Biodivers 1(1):44–64. https://doi.org/10.1002/cbdv.200490012

    Article  PubMed  Google Scholar 

  66. King RW, Klabe RM, Reid CD, Erickson-Viitanen SK (2002) Potency of nonnucleoside reverse transcriptase inhibitors (NNRTIs) used in combination with other human immunodeficiency virus NNRTIs, NRTIs, or protease inhibitors. Antimicrob Agents Chemother 46(6):1640–1646. https://doi.org/10.1128/aac.46.6.1640-1646.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. De Clercq E (1999) Perspectives of nonnucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Farmaco 54(1–2):26–45. https://doi.org/10.1016/s0014-827x(98)00103-7

    Article  PubMed  Google Scholar 

  68. Melikian GL et al (2014) Nonnucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: implications for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing. J Antimicrob Chemother 69(1):12–20. https://doi.org/10.1093/jac/dkt316

    Article  CAS  PubMed  Google Scholar 

  69. Huang J et al (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14(1):71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  PubMed  Google Scholar 

  70. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  71. Hemtasin C et al (2011) Cytotoxic pentacyclic and tetracyclic aromatic sesquiterpenes from Phomopsis archeri. J Nat Prod 74(4):609–613. https://doi.org/10.1021/np100632g

    Article  CAS  PubMed  Google Scholar 

  72. Bedi A, Adholeya A, Deshmukh KS (2018) Novel anticancer compounds from Endophytic fungi. Curr Biotechnol 7(3):168–184. https://doi.org/10.2174/2211550105666160622080354

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NAG: formal analysis; writing—original draft preparation. KKK: conceptualisation; investigation; formal analysis; writing—review & editing—original draft preparation. ÖB: conceptualisation; investigation; formal analysis; writing—original draft preparation—writing—review & editing. BES: investigation; formal analysis. RSS: conceptualisation; formal analysis; writing—original draft preparation. All authors commented on previous versions and read and approved the final manuscript.

Corresponding author

Correspondence to Ömür Baysal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

The study is dedicated to the memory of the late Prof. Dr. Randall J. Cohrs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, N.A., Kırboğa, K.K., Baysal, Ö. et al. Data mining and molecular dynamics analysis to detect HIV-1 reverse transcriptase RNase H activity inhibitor. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10707-6

Keywords

Navigation