Skip to main content

Advertisement

Log in

Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer’s disease based on network pharmacology and molecular docking

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Alzheimer's disease is the most common neurodegenerative disease. Acanthopanax senticosus, also known as Ciwujia or Siberian ginseng in Chinese, has a wide range of antioxidant and anti-inflammatory activities. The study aims to explore the action mechanism of A. senticosus against Alzheimer's disease using network pharmacology and molecular docking. The active ingredients and targets of A. senticosus were searched through the ETCM database, and Alzheimer's disease-related targets were obtained through the OMIM and GeneCards databases. The Cytoscape 3.7.2 software was used to construct a “drug-component-target” relationship network, and the target genes of A. senticosus against Alzheimer's disease were imported into the String database to establish a protein interaction (PPI) network. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes gene enrichment analyses were performed through the Metascape database to obtain potential pathways of action of A. senticosus for the treatment of Alzheimer's disease, and the ability of these active ingredients to bind to core targets was then verified by molecular docking. 51 active ingredients were screened from A. senticosus, and 88 effective targets for Alzheimer's disease were screened. Topological and pathway-enrichment analyses revealed that A. senticosus could play a beneficial role in the treatment of Alzheimer's disease by regulating apoptosis and inflammation. Molecular docking results showed that Ciwujianoside B, Chiisanoside, and Ciwujianoside D1 had strong binding abilities to key target proteins (TNFα, IL1β, and CASP3). Collectively, A. senticosus is feasible in the treatment of Alzheimer's disease.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sonkusare SK, Kaul CL, Ramarao P (2005) Dementia of Alzheimer’s disease and other neurodegenerative disorders—memantine, a new hope. Pharmacol Res 51:1–17. https://doi.org/10.1016/j.phrs.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  2. Association A (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509. https://doi.org/10.1016/j.jalz.2016.03.001

    Article  Google Scholar 

  3. Hodson R (2018) Alzheimer’s disease. Nature 559:S1. https://doi.org/10.1038/d41586-018-05717-6

    Article  CAS  PubMed  Google Scholar 

  4. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed 14:5541–5554. https://doi.org/10.2147/ijn.S200490

    Article  CAS  Google Scholar 

  5. Joe E, Ringman JM (2019) Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ 367:l6217. https://doi.org/10.1136/bmj.l6217

    Article  PubMed  Google Scholar 

  6. Li S, Wu Z, Le W (2021) Traditional Chinese medicine for dementia. Alzheimers Dement 17:1066–1071. https://doi.org/10.1002/alz.12258

    Article  PubMed  Google Scholar 

  7. Pei H, Ma L, Cao Y, Wang F, Li Z, Liu N, Liu M, Wei Y, Li H (2020) Traditional Chinese medicine for Alzheimer’s disease and other cognitive impairment: a review. Am J Chin Med 48:487–511. https://doi.org/10.1142/s0192415x20500251

    Article  CAS  PubMed  Google Scholar 

  8. Wang ZY, Liu J, Zhu Z, Su CF, Sreenivasmurthy SG, Iyaswamy A, Lu JH, Chen G, Song JX, Li M (2021) Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: a mechanism review. Biomed Pharmacother 133:110968. https://doi.org/10.1016/j.biopha.2020.110968

    Article  CAS  PubMed  Google Scholar 

  9. Jia A, Zhang Y, Gao H, Zhang Z, Zhang Y, Wang Z, Zhang J, Deng B, Qiu Z, Fu C (2021) A review of Acanthopanax senticosus (Rupr and Maxim.) harms: from ethnopharmacological use to modern application. J Ethnopharmacol 268:113586. https://doi.org/10.1016/j.jep.2020.113586

    Article  CAS  PubMed  Google Scholar 

  10. Li T, Ferns K, Yan ZQ, Yin SY, Kou JJ, Li D, Zeng Z, Yin L, Wang X, Bao HX, Zhou YJ, Li QH, Zhao ZY, Liu H, Liu SL (2016) Acanthopanax senticosus: photochemistry and anticancer potential. Am J Chin Med 44:1543–1558. https://doi.org/10.1142/s0192415x16500865

    Article  CAS  PubMed  Google Scholar 

  11. Wang YH, Meng Y, Zhai C, Wang M, Avula B, Yuk J, Smith KM, Isaac G, Khan IA (2019) The chemical characterization of Eleutherococcus senticosus and Ci-wu-jia tea using UHPLC-UV-QTOF/MS. Int J Mol Sci. https://doi.org/10.3390/ijms20030475

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li XJ, Tang SQ, Huang H, Luo J, Zhang XD, Yook CS, Whang WK, Kim YC, Liu XQ (2021) Acanthopanax henryi: review of botany, phytochemistry and pharmacology. Molecules. https://doi.org/10.3390/molecules26082215

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang L, Zhao H, Huang B, Zheng C, Peng W, Qin L (2011) Acanthopanax senticosus: review of botany, chemistry and pharmacology. Pharmazie 66:83–97

    CAS  PubMed  Google Scholar 

  14. Zhang H, Wang S, Jin LH (2020) Acanthopanax senticosus polysaccharide regulates the intestinal homeostasis disruption induced by toxic chemicals in Drosophila. Phytother Res 34:193–200. https://doi.org/10.1002/ptr.6522

    Article  CAS  PubMed  Google Scholar 

  15. Chen RH, Du WD, Wang Q, Li ZF, Wang DX, Yang SL, Feng YL (2021) Effects of Acanthopanax senticosus (Rupr. & Maxim) Harms on cerebral ischemia-reperfusion injury revealed by metabolomics and transcriptomics. J Ethnopharmacol 264:113212. https://doi.org/10.1016/j.jep.2020.113212

    Article  CAS  PubMed  Google Scholar 

  16. Li XT, Zhou JC, Zhou Y, Ren YS, Huang YH, Wang SM, Tan L, Yang ZY, Ge YW (2022) Pharmacological effects of Eleutherococcus senticosus on the neurological disorders. Phytother Res. https://doi.org/10.1002/ptr.7555

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li W, Liu M, Feng S, Wu B, Zhang S, Yang W, Liu GJ (2009) Acanthopanax for acute ischaemic stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007032.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Song C, Li S, Duan F, Liu M, Shan S, Ju T, Zhang Y, Lu W (2022) The therapeutic effect of Acanthopanax senticosus components on radiation-induced brain injury based on the pharmacokinetics and neurotransmitters. Molecules. https://doi.org/10.3390/molecules27031106

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hadni H, Elhallaoui M (2020) 3D-QSAR, docking and ADMET properties of aurone analogues as antimalarial agents. Heliyon 6:e03580. https://doi.org/10.1016/j.heliyon.2020.e03580

    Article  PubMed  PubMed Central  Google Scholar 

  20. Onodera K, Satou K, Hirota H (2007) Evaluations of molecular docking programs for virtual screening. J Chem Inf Model 47:1609–1618. https://doi.org/10.1021/ci7000378

    Article  CAS  PubMed  Google Scholar 

  21. Kroemer RT, Vulpetti A, McDonald JJ, Rohrer DC, Trosset JY, Giordanetto F, Cotesta S, McMartin C, Kihlén M, Stouten PF (2004) Assessment of docking poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations. J Chem Inf Comput Sci 44:871–881. https://doi.org/10.1021/ci049970m

    Article  CAS  PubMed  Google Scholar 

  22. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—what can we learn from earlier mistakes? J Comput Aided Mol Des 22:213–228. https://doi.org/10.1007/s10822-007-9163-6

    Article  CAS  PubMed  Google Scholar 

  23. Gao YD, Hu Y, Crespo A, Wang D, Armacost KA, Fells JI, Fradera X, Wang H, Wang H, Sherborne B, Verras A, Peng Z (2018) Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort. J Comput Aided Mol Des 32:129–142. https://doi.org/10.1007/s10822-017-0072-z

    Article  CAS  PubMed  Google Scholar 

  24. Fischer A, Smieško M, Sellner M, Lill MA (2021) Decision making in structure-based drug discovery: visual inspection of docking results. J Med Chem 64:2489–2500. https://doi.org/10.1021/acs.jmedchem.0c02227

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 11:110–120. https://doi.org/10.1016/s1875-5364(13)60037-0

    Article  PubMed  Google Scholar 

  26. Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H (2021) Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther 225:107843. https://doi.org/10.1016/j.pharmthera.2021.107843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Dong J, Yang D, Qian Q, Wang P, Yang X, Li W, Li G, Shen X, Wang F (2021) Synergistic network pharmacology for traditional Chinese medicine Liangxue Tongyu formula in acute intracerebral hemorrhagic stroke. Neural Plast 2021:8874296. https://doi.org/10.1155/2021/8874296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  29. Zhang XD, Liu XQ, Kim YH, Whang WK (2014) Chemical constituents and their acetyl cholinesterase inhibitory and antioxidant activities from leaves of Acanthopanax henryi: potential complementary source against Alzheimer’s disease. Arch Pharm Res 37:606–616. https://doi.org/10.1007/s12272-013-0252-x

    Article  CAS  PubMed  Google Scholar 

  30. Holmes C (2013) Review: systemic inflammation and Alzheimer’s disease. Neuropathol Appl Neurobiol 39:51–68. https://doi.org/10.1111/j.1365-2990.2012.01307.x

    Article  CAS  PubMed  Google Scholar 

  31. Karlawish J, Jack CR Jr, Rocca WA, Snyder HM, Carrillo MC (2017) Alzheimer’s disease: the next frontier-special report 2017. Alzheimers Dement 13:374–380. https://doi.org/10.1016/j.jalz.2017.02.006

    Article  PubMed  Google Scholar 

  32. Vassar R (2007) Caspase-3 cleavage of GGA3 stabilizes BACE: implications for Alzheimer’s disease. Neuron 54:671–673. https://doi.org/10.1016/j.neuron.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  33. D’Amelio M, Sheng M, Cecconi F (2012) Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 35:700–709. https://doi.org/10.1016/j.tins.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  34. Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39:2301–2312. https://doi.org/10.1007/s11064-014-1454-4

    Article  CAS  PubMed  Google Scholar 

  35. Clark I, Atwood C, Bowen R, Paz-Filho G, Vissel B (2012) Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer’s disease links numerous treatment rationales. Pharmacol Rev 64:1004–1026. https://doi.org/10.1124/pr.112.005850

    Article  CAS  PubMed  Google Scholar 

  36. Baril AA, Beiser AS, Redline S, McGrath ER, Gottlieb DJ, Aparicio H, Seshadri S, Himali JJ, Pase MP (2021) Interleukin-6 interacts with sleep Apnea severity when predicting incident Alzheimer’s disease dementia. J Alzheimers Dis 79:1451–1457. https://doi.org/10.3233/jad-200545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Project of Hunan Provincial Health Commission 2021 (No. 202110000052; to Feng Kuang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xiang.

Ethics declarations

Conflict of interest

There is no conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, F., Xiang, T. Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer’s disease based on network pharmacology and molecular docking. Mol Divers 27, 2849–2865 (2023). https://doi.org/10.1007/s11030-022-10586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10586-3

Keywords

Navigation