Skip to main content
Log in

A consecutive synthesis of spiro[cyclopenta[b]pyrrole-5,2′-indene] derivatives via spirocyclization/annulation reactions

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The reaction between ninhydrin-malononitrile adduct [2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)malononitrile] and ethyl 2-(alkylamino)-4-aryl-4-oxo-but-2-enoates (prepared from ethyl 2,4-dioxo-4-arylbutanoate and alkylamines) in the presence of Et3N in MeCN at room temperature afforded 3-alkylamino-2-aryloyl-1′,3′,4-trioxo-1′,3′-dihydrospiro[cyclopentane-1,2′-inden]-2-ene-5,5-dicarbonitriles in 78–95% yields. Five derivatives of these NH-acidic compounds are used to intercept the reactive zwitterionic intermediates generated from dimethyl acetylenedicarboxylate and Ph3P to produce dimethyl 4,4-dicyano-6-aryloyl-1-alkyl-1′,3′-dioxo-1′,2,3′,4-tetrahydro-1H-spiro[cyclopenta[b]pyrrole-5,2′-indene]-2,3-dicarboxylates. Radical scavenging activity of four derivatives was investigated by radical trapping of diphenylpicrylhydrazine and ferric reduction power experiments. The antibacterial activities of six derivatives were studied by disk diffusion test on Gram-positive and Gram-negative bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ruhemann S (1910) CXXXII. Cyclic di- and tri-ketones. J Chem Soc Trans 97:1438–1449. https://doi.org/10.1039/CT9109701438

    Article  CAS  Google Scholar 

  2. Jong JAW, Moret ME, Verhaar MC, Hennink WE, Gerritsen KGF, van Nostrum CF (2018) Effect of substituents on the reactivity of ninhydrin with urea. ChemistrySelect 3:1224–1229. https://doi.org/10.1002/slct.201800040

    Article  CAS  Google Scholar 

  3. Devi RV, Garnade AM, Maity DK, Bhate PM (2016) A serendipitous synthesis of 11a-hydroxy-11,11a-dihydrobenzo[e]indeno[2,1-b][1,4]diazepine-10,12-dione derivatives by condensation of 2-aminobenzamides with ninhydrin in water. J Org Chem 81:1689–1695. https://doi.org/10.1021/acs.joc.5b02327

    Article  CAS  PubMed  Google Scholar 

  4. Jiang B, Li QY, Tu SJ, Li G (2012) Three-component domino reactions for selective formation of Indeno[1,2-b]indole derivatives. Org Lett 14:5210–5213. https://doi.org/10.1021/ol3023038

    Article  CAS  PubMed  Google Scholar 

  5. Verma P, Mishra A, Chauhan S, Singh S, Srivastava V (2019) DABCO catalyzed synthesis of β-hydroxy ketones derived from α-methyl ketones and ninhydrin under microwave irradiations. ChemistrySelect 6:5394–5397. https://doi.org/10.1002/slct.201900720

    Article  CAS  Google Scholar 

  6. Kundu A, Pramanik A (2015) Novel synthesis of a series of spiro 1,3-indanedione-fused dihydropyridines through the condensation of a tetrone with N-aryl/alkylenamines in presence of solid support silica sulfuric acid. Mol Divers 19:459–471. https://doi.org/10.1007/s11030-015-9582-6

    Article  CAS  PubMed  Google Scholar 

  7. Ukhin LY, Kuz’mina LG, Alexeenko DV, Belousova LV, Shepelenko EN, Podshibyakin VA, Morkovnik A (2018) Novel reactions of ninhydrin oxime with mercaptoalkanoic acids. Mendeleev Commun 28:300–302. https://doi.org/10.1016/j.mencom.2018.05.024

    Article  CAS  Google Scholar 

  8. Das S, Dutta A, Maity S, Ghosh P, Mahali K (2018) Insertion of the o-aminophenol core into ninhydrin–phenol adducts: migration of ninhydrin carbon leading to N-phenyl­benzoate-substituted phthalimides. Synlett 29:581–584. https://doi.org/10.1055/s-0036-1589146

    Article  CAS  Google Scholar 

  9. Jamaleddini A, Mohammadizadeh MR (2017) Novel and highly efficient synthesis of 3-(alkyl/benzylthio)-9b-hydroxy-1H-imidazo[5,1-a]isoindole-1,5(9bH)-dione derivatives. Tetrahedron Lett 58:78–81. https://doi.org/10.1016/j.tetlet.2016.11.109

    Article  CAS  Google Scholar 

  10. Panda P, Nayak S, Sahoo SK, Mohapatra S, Nayak D, Pradhan R, Kundu CN (2018) Diastereoselective synthesis of novel spiro indanone fused pyrano[3,2-c]chromene derivatives following hetero-Diels–Alder reaction and in vitro anticancer studies. RSC Adv 8:16802–16814. https://doi.org/10.1039/C8RA02729C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okpekon T, Millot M, Champy P, Gleye C, Yolou S, Bories C, Loiseau P, Laurens A, Hocquemiller R (2009) A novel 1-indanone isolated from Uvaria afzelii roots. Nat Prod Res 23:909–915. https://doi.org/10.1080/14786410802497240

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Philips D, Pan S (2011) A concise synthesis of paucifloral f and related indanone analogues via palladium-catalyzed α-arylation. J Org Chem 76:1902–1905. https://doi.org/10.1021/jo102298p

    Article  CAS  PubMed  Google Scholar 

  13. Mal D, De SR (2009) Total synthesis of Euplectin, a natural product with a chromone fused indenone. Org Lett 11:4398–4401. https://doi.org/10.1021/ol901817r

    Article  CAS  PubMed  Google Scholar 

  14. Das S (2020) Recent applications of ninhydrin in multicomponent reactions. RSC Adv 10:18875–18906. https://doi.org/10.1039/D0RA02930K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Patil SA, Patil R, Patil SA (2017) Recent developments in biological activities of indanones. Eur J Med Chem 138:182–198. https://doi.org/10.1016/j.ejmech.2017.06.032

    Article  CAS  PubMed  Google Scholar 

  16. Smith LK, Baxendale IR (2015) Total syntheses of natural products containing spirocarbocycles. Org Biomol Chem 13:9907–9933. https://doi.org/10.1039/C5OB01524C

    Article  CAS  PubMed  Google Scholar 

  17. Kotha S, Cheekatla SR, Fatma A (2019) Synthetic approach to the ABCD ring system of anticancer agent fredericamycin A via Claisen rearrangement and ring-closing metathesis as key steps. ACS Omega 4:17109–17116. https://doi.org/10.1021/acsomega.9b01178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qi WJ, HanY LCZ, Yan CG (2016) Convenient synthesis of triphenylphosphanylidene 1′,3′-dihydrospiro[cyclopentane-1,2′-inden]-2-enes via three-component reaction. Synthesis 48:4465–4470. https://doi.org/10.1055/s-0036-1588309

    Article  CAS  Google Scholar 

  19. Djurišić AB, Chen X, Leung YH, Man A (2012) ZnO nanostructures: growth, properties and applications. J Mater Chem 22:6526–6535. https://doi.org/10.1039/C2JM15548F

    Article  Google Scholar 

  20. Babizhayev MA, Deyev AI, Yermakovea VN, Brikman IV, Bours J (2004) Lipid peroxidation and cataracts. Drugs R D 5:125–139. https://doi.org/10.2165/00126839-200405030-00001

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Meydani M (2002) Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients. Nutr Rev 60:368–371. https://doi.org/10.1301/00296640260385810

    Article  PubMed  Google Scholar 

  22. Yavari I, Taheri Z, Sheikhi S, Bahemmat S, Halvagar MR (2021) Synthesis of thia- and thioxo-tetraazaspiro[4.4]nonenones from nitrile imines and arylidenethiohydantoins. Mol Divers 25:777–785. https://doi.org/10.1007/s11030-020-10056-8

    Article  CAS  PubMed  Google Scholar 

  23. Yavari I, Hojati M, Azad L, Halvagar MR (2018) A synthesis of spirocyclic oxazinoisoquinolines and oxazinoquinolines bearing thiazolopyrimidine moieties. Synlett 29:1024–1027. https://doi.org/10.1055/s-0037-1609302

    Article  CAS  Google Scholar 

  24. Yavari I, Baoosi L, Halvagar MR (2017) A synthesis of functionalized dihydro-1H-pyrrolizines and spiropyrrolizines via [2+3] cycloaddition reactions. Mol Divers 21:265–271. https://doi.org/10.1007/s11030-017-9725-z

    Article  CAS  PubMed  Google Scholar 

  25. Yavari I, Bayat M (2003) A new synthesis of highly functionalized 2H-pyran derivatives. Tetrahedron 59:2001–2005. https://doi.org/10.1016/S0040-4020(03)00114-5

    Article  CAS  Google Scholar 

  26. Parhami A, Yavari I (2021) A consecutive synthesis of spirocyclopentanes from 2,4-dioxo-arylbutanoates, malononitrile and vicinal dicarbonyl compounds. Synth Commun 51:2847–2852. https://doi.org/10.1080/00397911.2021.1955269

    Article  CAS  Google Scholar 

  27. Bidchol AM, Wilfred A, Abhijna P, Harish R (2011) Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italic. Food Bioprocess Technol 4:1137–1143. https://doi.org/10.1007/s11947-009-0196-9

    Article  Google Scholar 

  28. Bryce MR, Davies SR, Hasan M, Ashwell GJ, Szablewski M, Drew MGB, Short R, Hursthouse MB (1989) Preparation and magnetic properties of a range of. J Chem Soc Perkin Trans 2(9):1199–1355. https://doi.org/10.1039/P298900FX033

    Article  Google Scholar 

  29. Ingersoll AW, Babcock SH (1943) Organic syntheses. Coll, vol 2. Wiley, New York, p 531

  30. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948. https://doi.org/10.1021/jf00018a005

    Article  CAS  Google Scholar 

  31. Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem 42:629–632. https://doi.org/10.1021/jf00039a005

    Article  CAS  Google Scholar 

  32. Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 49:4083–4089. https://doi.org/10.1021/jf0103572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Research Council of Science and Research Branch, Islamic Azad University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa Yavari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7037 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parhami, A., Yavari, I. & Najafi, G.R. A consecutive synthesis of spiro[cyclopenta[b]pyrrole-5,2′-indene] derivatives via spirocyclization/annulation reactions. Mol Divers 27, 2001–2013 (2023). https://doi.org/10.1007/s11030-022-10535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10535-0

Keywords

Navigation