Skip to main content

Advertisement

Log in

Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica oleracea L. var. italica

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, antioxidant activities of aqueous and ethanolic extracts of Brassica oleracea L. var. italica were investigated. The antioxidant properties of both extracts of Brassica oleracea L. var. italica were evaluated using different antioxidant tests, including 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, superoxide radical scavenging, inhibition of microsomal lipid peroxidation, reduction of power, and metal ion chelating activities. Inhibition of superoxide scavenging by aqueous and ethanolic extracts showed an IC50 of 0.93 and 0.25 mg/ml, respectively. Metal ion chelation showed an IC50 of 0.35 mg/ml of both the extracts and was equipotent to positive control, ethylenediamine tetra-acetic acid. The ethanolic extract of Brassica oleracea L. var. italica exhibited higher antioxidant activity in DPPH radical and superoxide anion scavenging than that of aqueous extract. The results obtained in the in vitro models clearly suggest that, Brassica oleracea L. var. italica is a natural source for antioxidants, which could serve as a nutraceutical with potential applications in reducing the level of oxidative stress and related health benefits. However, comprehensive studies need to be conducted to ascertain the in vivo safety of such extracts in experimental animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avila-Sosa, R., Gastelum-Franco, M. G., Camacho-Davila, A., Torres-Munoz, J. V., & Nevarez-Moorillon, G. V. (2008). Extracts of Mexican Oregano (Lippia berlandieri Schauer) with Antioxidant and Antimicrobial activity. Food and Bioprocess Technology. doi:10.1007/s11947-008-0085-7.

  • Bansal, A. K., Bansal, M., Soni, G., & Bhatnagar, D. (2005). N-nitrosodiethylamine induced oxidative stress in rat liver. Chemico-Biological Interactions, 156, 101–111. doi:10.1016/j.cbi.2005.08.001.

    Article  CAS  Google Scholar 

  • Behl, C., & Moosmann, B. (2002). Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radical Biology & Medicine, 33, 182–191. doi:10.1016/S0891-5849(02)00883-3.

    Article  CAS  Google Scholar 

  • Buege, J. A., & Aust, S. T. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310. doi:10.1016/S0076-6879(78)52032-6.

    Article  CAS  Google Scholar 

  • Cao, G. H., Sofic, E., & Prior, R. L. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry, 44(11), 3426–3431. doi:10.1021/jf9602535.

    Article  CAS  Google Scholar 

  • Chu, Y., Sun, J., Wu, X., & Liu, R. (2002). Antioxidant and antiproliferative activities of common vegetables. Journal of Agricultural and Food Chemistry, 50(23), 6910–9616. doi:10.1021/jf020665f.

    Article  CAS  Google Scholar 

  • Chun, H. L., & Chi, Y. C. (2004). Textural change and antioxidant properties of broccoli under different cooking treatments. Food Chemistry, 90(2), 9–15.

    Google Scholar 

  • Coulson, D. R., Siobhan, B., Cathal, J. F., Passmore, P., & Johnston, J. A. (2004). β-Secretase activity in human platelets. Neurobiology of Aging, 25, 358. doi:10.1016/S0197-4580(04)81178-3.

    Article  Google Scholar 

  • Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 38, 674–677. doi:10.1021/jf00093a019.

    Article  CAS  Google Scholar 

  • Diplock, A. T. (1997). Will the `good fairies’ please proves to us that vitamin E lessens human degenerative of disease? Free Radical Research, 27, 511–532.

    Article  CAS  Google Scholar 

  • Du Toit, R., Volsteedt, Y., & Apostolides, Z. (2001). Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology, 166, 63–69. doi:10.1016/S0300-483X(01)00446-2.

    Article  Google Scholar 

  • Duh, P. D., Tu, Y. Y., & Yen, G. C. (1999). Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). Lebnesmittel-Wissenschaft Technologie, 32, 269–277. doi:10.1006/fstl.1999.0548.

    Article  CAS  Google Scholar 

  • Finley, J. W., Sigrid-Keck, A., Robbins, R. J., & Hintze, K. J. (2005). Selenium enrichment of broccoli: Interaction between selenium and secondary plant compounds. Journal of Nutrition, 135, 1236–1239.

    CAS  Google Scholar 

  • Gordon, M. H. (1990). The mechanism of antioxidant action in vitro. In B. J. F. Hudson (Ed.), Food antioxidants, pp. 1–18. London: Elsevier Applied Science.

    Google Scholar 

  • Gulcin, I., Oktay, M., Kirecci, E., & Kufrevioglu, O. I. (2003). Screening of antioxidant and antimicrobial activities of anise seed extracts. Journal of Food Chemistry, 83, 371–382. doi:10.1016/S0308-8146(03)00098-0.

    Article  CAS  Google Scholar 

  • Guohua, C., Emin, S., & Ronald, L. (1997). Antioxidant and prooxidant behavior of flavonoids: Structure–activity relationship. Free Radical Biology & Medicine, 22, 749–760. doi:10.1016/S0891-5849(96)00351-6.

    Article  Google Scholar 

  • Guthrie, N., & Kurowska, E. M. N. (2001). Anticancer and cholesterol-lowering activities of citrus flavonoids. In R. E. Wildman (Ed.), Handbook of nutraceuticals and functional foods, pp. 113–126. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1986). Oxygen free radicals and iron in relation in biology and medicine, some problem and concept. Archives of Biochemistry and Biophysics, 246, 501. doi:10.1016/0003-9861(86)90305-X.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals, ageing and disease. In B. Halliwell & J. M. Gutteridge (Eds.), Free radicals in biology and medicine, pp. 446–493. Oxford: Clarendon Press.

    Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1990). Role of free radicals and catalytic metal ions in human disease: An overview. Methods in Enzymology, 186, 1–85. doi:10.1016/0076-6879(90)86093-B.

    Article  CAS  Google Scholar 

  • Hatano, T., Edamatsu, R., Mori, A., Fujita, Y., & Yasuhara, E. (1989). Effect of interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical and on DPPH radical. Chemical and Pharmaceutical Bulletin (Tokyo), 37, 2016–2021.

    CAS  Google Scholar 

  • Hatano, T., Takagi, M., Ito, H., & Yoshida, T. (1997). Phenolic constituents of liquorice. VII. A new calcone with a potent radical scavenging activity and accompanying phenolics. Chemical and Pharmaceutical Bulletin (Tokyo), 45, 1485–1492.

    CAS  Google Scholar 

  • Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology & Medicine, 9, 515–540. doi:10.1016/0891-5849(90)90131-2.

    Article  CAS  Google Scholar 

  • Jeffery, E. H., & Jarrell, V. (2001). Cruciferous vegetables and cancer prevention. In R. E. C. Wildman (Ed.), Handbook of nutraceuticals and functional foods, pp. 169–191. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Jung, H. A., Park, J. C., Chung, H. Y., Kim, J., & Choi, J. S. (1999). Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Archives of Pharmacal Research, 22, 213–218. doi:10.1007/BF02976549.

    Article  CAS  Google Scholar 

  • Kamath, S. A., & Rubin, E. (1972). Interaction of calcium with microsomes: A modified method for the rapid isolation of rat liver microsomes. Biochemical and Biophysical Research Communications, 49, 52–59. doi:10.1016/0006-291X(72)90008-3.

    Article  CAS  Google Scholar 

  • Mariko, N., Hassimotto, M., Genovese, I. M., & Lajolo, F. M. (2005). Antioxidant activity of dietary fruits, vegetables and commercial frozen pulps. Journal of Agricultural and Food Chemistry, 53, 2928–2935. doi:10.1021/jf047894h.

    Article  Google Scholar 

  • Matusheski, N. V., Swarup, R., Juvik, J. A., Mithen, R., Bennett, M., & Jeffery, E. H. (2006). Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. Journal of Agricultural and Food Chemistry, 54, 2069–2076. doi:10.1021/jf0525277.

    Article  CAS  Google Scholar 

  • Meyer, A. S., & Isaksen, A. (1995). Application of enzymes as food antioxidants. Trends in Food Science & Technology, 6, 300–304. doi:10.1016/S0924-2244(00)89140-2.

    Article  CAS  Google Scholar 

  • Moreno, D. A., Carvajal, M., Lopez-Berenguer, C., & Garcia-Viguera, C. (2006). Chemical and biological characterization of nutraceuticals compounds of broccoli. Journal of Pharmaceutical and Biomedical Analysis, 41, 1508–1522. doi:10.1016/j.jpba.2006.04.003.

    Article  CAS  Google Scholar 

  • Nishikimi, M., Rao, A., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulphateand molecular oxygen. Biochemical and Biophysical Research Communications, 46, 849–854. doi:10.1016/S0006-291X(72)80218-3.

    Article  CAS  Google Scholar 

  • Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japanese Journal of Nutrition, 44, 307–315.

    CAS  Google Scholar 

  • Pietta, P., Simonetti, P., & Mauri, P. (1998). Antioxidant activity of selected medicinal plants. Journal of Agricultural and Food Chemistry, 46, 4487–4490. doi:10.1021/jf980310p.

    Article  CAS  Google Scholar 

  • Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042. doi:10.1021/np9904509.

    Article  CAS  Google Scholar 

  • Pin-Der-Duh, X. (1998). Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free-radical and active oxygen. Journal of the American Oil Chemists’ Society, 75, 455–461. doi:10.1007/s11746-998-0248-8.

    Article  Google Scholar 

  • Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48, 3396–3402. doi:10.1021/jf9913458.

    Article  CAS  Google Scholar 

  • Rekha, M. N., Ramesh Yadav, A., Shylaja Dharmesh, A. S., Chauhan & Ramteke, R. S. (2008). Evaluation of antioxidant properties of dry soup mix extracts containing dill (Anethum sowa L.) leaf. Food and Bioprocess Technology. doi:10.1007/s11947-008-0123-5.

  • Rice-Evans, C., & Burdon, R. (1993). Free radicals–lipid interaction and their pathological consequences. Progress in Lipid Research, 32, 71–110. doi:10.1016/0163-7827(93)90006-I.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Subhendu, M., Subhendu, G., & Dipak, K. D. (2008). Broccoli: A unique vegetable that protects mammalian hearts through the redox cycling of the thioredoxin superfamily. Journal of Agricultural and Food Chemistry, 56, 609–617. doi:10.1021/jf0728146.

    Article  Google Scholar 

  • Tanaka, M., Kuei, C. W., Nagashima, Y., & Taguchi, T. (1998). Application of antioxidative maillrad reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkai Shi, 54, 1409–1414.

    Google Scholar 

  • Ting, S., Joseph, R. P., & Juming, T. (2007). Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chemistry, 105(1), 101–106. doi:10.1016/j.foodchem.2007.03.048.

    Article  Google Scholar 

  • Yamaguchi, T., Takamura, H., Matoba, T., & Terao, J. (1998). HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1,-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry, 62, 1201–1204. doi:10.1271/bbb.62.1201.

    Article  CAS  Google Scholar 

  • Yamaguchi, F., Ariga, T., Yoshimira, Y., & Nakazawa, H. (2000). Antioxidant and anti-glycation of carcinol from Garcinia indica Fruit Rind. Journal of Agricultural and Food Chemistry, 48, 180–185. doi:10.1021/jf990845y.

    Article  CAS  Google Scholar 

  • Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43, 27–32. doi:10.1021/jf00049a007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. C.K. Renukarya, Director of the Institute for his keen interest in this study. Thanks to Dr. Jyothi Bala Chauhan, Reader, Department of Biotechnology, Mahajana PG Center, Mysore, for her support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Harish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidchol, A.M., Wilfred, A., Abhijna, P. et al. Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica oleracea L. var. italica . Food Bioprocess Technol 4, 1137–1143 (2011). https://doi.org/10.1007/s11947-009-0196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0196-9

Keywords

Navigation