Skip to main content

Advertisement

Log in

Unraveling the molecular mechanism of l-menthol against cervical cancer based on network pharmacology, molecular docking and in vitro analysis

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cervical cancer is a major cause of gynecological related mortalities in developing countries. Cisplatin, a potent chemotherapeutic agent used for treating advanced cervical cancer exhibits side effects and resistance development. The current study was aimed to investigate the repurposing of l-menthol as a potential therapeutic drug against cervical cancer. L-menthol was predicted to be non-toxic with good pharmacokinetic properties based on SwissADME and pkCSM analysis. Subsequently, 543 and 1664 targets of l-menthol and cervical cancer were identified using STITCH, BATMAN-TCM, PharmMapper and CTD databases. STRING and Cytoscape analysis of the merged protein–protein interaction network revealed 107 core targets of l- menthol against cervical cancer. M-CODE identified highly connected clusters between the core targets which through KEGG analysis were found to be enriched in pathways related to apoptosis and adherence junctions. Molecular docking showed that l- menthol targeted E6, E6AP and E7 onco-proteins of HPV that interact and inactivate TP53 and Rb1 in cervical cancer, respectively. Molecular docking also showed good binding affinity of l-menthol toward proteins associated with apoptosis and migration. Molecular dynamics simulation confirmed stability of the docked complexes. In vitro analysis confirmed that l-menthol was cytotoxic towards cervical cancer CaSki cells and altered expression of TP53, Rb1, CDKN1A, E2F1, NFKB1, Akt-1, caspase-3, CDH1 and MMP-2 genes identified through network pharmacology approach.

Graphical abstract

Schematic representation of the work flow depicting the potential of l-menthol to target cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

The data generated and analyzed for the study has been included in the article and its associated supplementary information files.

References

  1. Arbyn M, Weiderpass E, Bruni L et al (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Heal 8:e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6

    Article  Google Scholar 

  2. LaVigne AW, Triedman SA, Randall TC et al (2017) Cervical cancer in low and middle income countries: addressing barriers to radiotherapy delivery. Gynecol Oncol Rep 22:16–20. https://doi.org/10.1016/j.gore.2017.08.004

    Article  Google Scholar 

  3. Beddoe AM (2019) Elimination of cervical cancer: challenges for developing countries. Ecancermedicalscience 13:975. https://doi.org/10.3332/ecancer.2019.975

    Article  Google Scholar 

  4. Rashid N, Koh HA, Baca HC et al (2016) Economic burden related to chemotherapy-related adverse events in patients with metastatic breast cancer in an integrated health care system. Breast Cancer Targets Ther 8:173–181. https://doi.org/10.2147/BCTT.S105618

    Article  CAS  Google Scholar 

  5. Lichota A, Gwozdzinski K (2018) Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci 19:3533. https://doi.org/10.3390/ijms19113533

    Article  CAS  Google Scholar 

  6. Patel T, Ishiuji Y, Yosipovitch G (2007) Menthol: a refreshing look at this ancient compound. J Am Acad Dermatol 57:873–878. https://doi.org/10.1016/j.jaad.2007.04.008

    Article  Google Scholar 

  7. Mirel S, Colobățiu L, Mirel M, Pop S (2017) Topical patches as treatments for the management of patient musculoskeletal and neuropathic pain. Balneo Res J 8(1):21–25. https://doi.org/10.12680/balneo.2017.137

    Article  Google Scholar 

  8. Scartazzini L, Tosati JV, Cortez DHC et al (2019) Gelatin edible coatings with mint essential oil (Mentha arvensis): film characterization and antifungal properties. J Food Sci Technol 56:4045–4056. https://doi.org/10.1007/s13197-019-03873-9

    Article  CAS  Google Scholar 

  9. Desam NR, Al-Rajab AJ, Sharma M et al (2019) Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × Piperita L. (peppermint) essential oils. J King Saud Univ - Sci 31:528–533. https://doi.org/10.1016/j.jksus.2017.07.013

    Article  Google Scholar 

  10. Yamamura H, Ugawa S, Ueda T et al (2008) TRPM8 activation suppresses cellular viability in human melanoma. Am J Physiol Physiol 295:C296–C301. https://doi.org/10.1152/ajpcell.00499.2007

    Article  CAS  Google Scholar 

  11. Lu HF, Liu JY, Hsueh SC et al (2007) (−)-Menthol inhibits WEHI-3 leukemia cells in vitro and in vivo. In Vivo 21:285–289 (Brooklyn)

    CAS  Google Scholar 

  12. Faridi U, Dhawan SS, Pal S et al (2016) Repurposing l-menthol for systems medicine and cancer therapeutics? l-menthol induces apoptosis through caspase 10 and by suppressing HSP90. Omi A J Integr Biol 20:53–64. https://doi.org/10.1089/omi.2015.0118

    Article  CAS  Google Scholar 

  13. Parashar G, Parashar NC, Capalash N (2017) (−) menthol induces reversal of promoter hypermethylation and associated up-regulation of the FANCF gene in the SiHa cell line. Asian Pacific J Cancer Prev 18:1365–1370. https://doi.org/10.22034/APJCP.2017.18.5.1365

    Article  Google Scholar 

  14. Qawoogha SS, Shahiwala A (2020) Identification of potential anticancer phytochemicals against colorectal cancer by structure-based docking studies. J Recept Signal Transduct 40:67–76. https://doi.org/10.1080/10799893.2020.1715431

    Article  CAS  Google Scholar 

  15. Guo L, Yan Z, Zheng X et al (2014) A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy. J Mol Model 20:1–10. https://doi.org/10.1007/s00894-014-2251-3

    Article  CAS  Google Scholar 

  16. Yang Y, Shi C-Y, Xie J et al (2020) Identification of potential dipeptidyl peptidase (DPP)-IV inhibitors among Moringa oleifera phytochemicals by virtual screening, molecular docking analysis, ADME/T-based prediction, and in vitro analyses. Molecules 25:189. https://doi.org/10.3390/molecules25010189

    Article  CAS  Google Scholar 

  17. Wang Y, Xing J, Xu Y et al (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48:488–515. https://doi.org/10.1017/S0033583515000190

    Article  Google Scholar 

  18. Zhao R lin, He Y min (2018) Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. J Ethnopharmacol 210:287–295. https://doi.org/10.1016/j.jep.2017.08.041

    Article  CAS  Google Scholar 

  19. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  20. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  Google Scholar 

  21. Szklarczyk D, Santos A, Von Mering C et al (2016) STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:D380–D384. https://doi.org/10.1093/nar/gkv1277

    Article  CAS  Google Scholar 

  22. Liu Z, Guo F, Wang Y et al (2016) BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine. Sci Rep 6:1–11. https://doi.org/10.1038/srep21146

    Article  CAS  Google Scholar 

  23. Wang X, Shen Y, Wang S et al (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45:W356–W360. https://doi.org/10.1093/nar/gkx374

    Article  CAS  Google Scholar 

  24. Davis AP, Grondin CJ, Johnson RJ et al (2019) The comparative toxicogenomics database: update 2019. Nucleic Acids Res 47:D948–D954. https://doi.org/10.1093/nar/gky868

    Article  CAS  Google Scholar 

  25. Ma C, Xu T, Sun X et al (2019) Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of baicalein in hepatocellular carcinoma. Evid-based Complement Altern Med. https://doi.org/10.1155/2019/7518374

    Article  Google Scholar 

  26. Niu X, Zhang J, Ni J et al (2018) Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Biosci Rep 38(6):BSR20180519. https://doi.org/10.1042/BSR20180519

    Article  Google Scholar 

  27. Pang JS, Li ZK, Lin P et al (2019) The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: a study based on TCGA and Cmap datasets. Oncol Rep 41:2089–2102. https://doi.org/10.3892/or.2019.7014

    Article  CAS  Google Scholar 

  28. Kouranov A, Xie L, de la Cruz J et al (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34:D302–D305. https://doi.org/10.1093/nar/gkj120

    Article  CAS  Google Scholar 

  29. Mahendran R, Jeyabasker S, Manoharan S et al (2017) In silico metabolic pathway analysis and docking analysis of Treponema pallidum subs Pallidum nichols for potential drug targets. Asian J Pharm Clin Res 10:261–264. https://doi.org/10.22159/ajpcr.2017.v10i5.17367

    Article  CAS  Google Scholar 

  30. Xia QD, Xun Y, Lu JL et al (2020) Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif 53:e12949. https://doi.org/10.1111/cpr.12949

    Article  CAS  Google Scholar 

  31. Sehgal SA, Mannan S, Ali S (2016) Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8. Drug Des Devel Ther 10:1605–1618. https://doi.org/10.2147/DDDT.S101929

    Article  CAS  Google Scholar 

  32. Lopez-Blanco JR, Aliaga JI, Quintana-Orti ES et al (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42:W271–W276. https://doi.org/10.1093/nar/gku339

    Article  CAS  Google Scholar 

  33. Abraham MJ, Murtola T, Schulz R et al (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  34. Huang J, Rauscher S, Nawrocki G et al (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  Google Scholar 

  35. Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. https://doi.org/10.1002/jcc.21367

    Article  CAS  Google Scholar 

  36. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960. https://doi.org/10.1021/jp003020w

    Article  CAS  Google Scholar 

  37. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  38. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  39. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  40. Chhabra R (2018) Let-7i-5p, miR-181a-2-3p and EGF/PI3K/SOX2 axis coordinate to maintain cancer stem cell population in cervical cancer. Sci Rep 8:7840. https://doi.org/10.1038/s41598-018-26292-w

    Article  CAS  Google Scholar 

  41. Rio DC, Ares M, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harb Protoc 5(6):pdb-rot5399. https://doi.org/10.1101/pdb.prot5439

    Article  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  43. Zhang J, Chen D, Han DM et al (2018) Tannic acid mediated induction of apoptosis in human glioma hs 683 cells. Oncol Lett 15:6845–6850. https://doi.org/10.3892/ol.2018.8197

    Article  CAS  Google Scholar 

  44. Jang GR, Harris RZ, Lau DT (2001) Pharmacokinetics and its role in small molecule drug discovery research. Med Res Rev 21:382–396. https://doi.org/10.1002/med.1015

    Article  CAS  Google Scholar 

  45. Verma A (2012) Lead finding from phyllanthus debelis with hepatoprotective potentials. Asian Pac J Trop Biomed 2:S1735–S1737. https://doi.org/10.1016/S2221-1691(12)60486-9

    Article  Google Scholar 

  46. Kumar N, Tomar R, Pandey A et al (2018) Preclinical evaluation and molecular docking of 1,3-benzodioxole propargyl ether derivatives as novel inhibitor for combating the histone deacetylase enzyme in cancer. Artif Cells Nanomed Biotechnol 46:1288–1299. https://doi.org/10.1080/21691401.2017.1369423

    Article  CAS  Google Scholar 

  47. Al-Nour MY, Ibrahim MM, Elsaman T (2019) Ellagic acid, kaempferol, and quercetin from acacia nilotica: promising combined drug with multiple mechanisms of action. Curr Pharmacol Rep 5:255–280. https://doi.org/10.1007/s40495-019-00181-w

    Article  CAS  Google Scholar 

  48. Vredenburg MR, Ojima I, Veith J et al (2001) Effects of orally active taxanes on P-glycoprotein modulation and colon and breast carcinoma drug resistance. JNCI J Natl Cancer Inst 93:1234–1245. https://doi.org/10.1093/jnci/93.16.1234

    Article  CAS  Google Scholar 

  49. Wanat K (2020) Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol Biol Rep 47:3221–3231. https://doi.org/10.1007/s11033-020-05361-2

    Article  CAS  Google Scholar 

  50. Adnan M, Siddiqui AJ, Hamadou WS et al (2021) Phytochemistry, bioactivities, pharmacokinetics and toxicity prediction of selaginella repanda with its anticancer potential against human lung, breast and colorectal carcinoma cell lines. Molecules 26:768. https://doi.org/10.3390/molecules26030768

    Article  CAS  Google Scholar 

  51. Ramsay RR, Popovic-Nikolic MR, Nikolic K et al (2018) A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med 7:3. https://doi.org/10.1186/s40169-017-0181-2

    Article  Google Scholar 

  52. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78. https://doi.org/10.1038/nrd1609

    Article  CAS  Google Scholar 

  53. Soave CL, Guerin T, Liu J, Dou QP (2017) Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev 36:717–736. https://doi.org/10.1007/s10555-017-9705-x

    Article  CAS  Google Scholar 

  54. Zhang J, Wang W, Zhou Y et al (2020) Terphenyllin suppresses orthotopic pancreatic tumor growth and prevents metastasis in mice. Front Pharmacol 11:457. https://doi.org/10.3389/fphar.2020.00457

    Article  CAS  Google Scholar 

  55. Aung TN, Qu Z, Kortschak RD et al (2017) Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci 18:656. https://doi.org/10.3390/ijms18030656

    Article  CAS  Google Scholar 

  56. Khare P, Chauhan A, Kumar V et al (2019) Bioavailable menthol (Transient Receptor Potential Melastatin-8 agonist) induces energy expending phenotype in differentiating adipocytes. Cells 8:383. https://doi.org/10.3390/cells8050383

    Article  CAS  Google Scholar 

  57. OECD (2012). The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins Part 1: Scientific Evidence. ENV/JM/MONO (2012)10/PART1, (JT03321047)

  58. Lin J-P, Lu H-F, Lee J-H et al (2005) (-)-Menthol inhibits DNA topoisomerases I, II α and β and promotes NF-Î B expression in human gastric cancer SNU-5 cells. Anticancer Res 25:2069–2074

    CAS  Google Scholar 

  59. Li Q, Wang X, Yang Z et al (2010) Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology 77:335–341. https://doi.org/10.1159/000264627

    Article  CAS  Google Scholar 

  60. Wang Y, Wang X, Yang Z et al (2012) Menthol inhibits the proliferation and motility of prostate cancer DU145 cells. Pathol Oncol Res 18:903–910. https://doi.org/10.1007/s12253-012-9520-1

    Article  CAS  Google Scholar 

  61. Kijpornyongpan T, Sereemaspun A, Chanchao C (2014) Dose-dependent cytotoxic effects of menthol on human malignant melanoma A-375 cells: correlation with TRPM8 transcript expression. Asian Pacific J Cancer Prev 15:1551–1556. https://doi.org/10.7314/APJCP.2014.15.4.1551

    Article  Google Scholar 

  62. Nagai K, Fukuno S, Omachi A et al (2019) Enhanced anti-cancer activity by menthol in HepG2 cells exposed to paclitaxel and vincristine: possible involvement of CYP3A4 downregulation. Drug Metab Pers Ther. https://doi.org/10.1515/dmpt-2018-0029

    Article  Google Scholar 

  63. Zhang R, Zhu X, Bai H, Ning K (2019) Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol 10:123. https://doi.org/10.3389/fphar.2019.00123

    Article  CAS  Google Scholar 

  64. Zeng L, Yang K (2017) Exploring the pharmacological mechanism of yanghe decoction on HER2-positive breast cancer by a network pharmacology approach. J Ethnopharmacol 199:68–85. https://doi.org/10.1016/j.jep.2017.01.045

    Article  CAS  Google Scholar 

  65. Liu X, Wu J, Zhang D et al (2018) A network pharmacology approach to uncover the multiple mechanisms of hedyotis diffusa willd. on colorectal cancer. Evid-Based Complement Altern Med 2018:1–12. https://doi.org/10.1155/2018/6517034

    Article  Google Scholar 

  66. Lee HS, Lee IH, Kang K et al (2021) A comprehensive understanding of the anticancer mechanisms of FDY2004 against cervical cancer based on network pharmacology. Nat Prod Commun 16:1–15. https://doi.org/10.1177/1934578X211004304

    Article  CAS  Google Scholar 

  67. Pei Z, Zeng J, Gao Y et al (2016) Oxymatrine inhibits the proliferation of CaSki cells via downregulating HPV16E7 expression. Oncol Rep 36:291–298. https://doi.org/10.3892/or.2016.4800

    Article  CAS  Google Scholar 

  68. Sidhu H, Capalash N (2017) UHRF1: The key regulator of epigenetics and molecular target for cancer therapeutics. Tumor Biol 39:1–11. https://doi.org/10.1177/1010428317692205

    Article  CAS  Google Scholar 

  69. Gökalp F (2021) The effective natural compounds for inhibiting cervical cancer. Med Oncol 38:1–4. https://doi.org/10.1007/s12032-021-01456-3

    Article  CAS  Google Scholar 

  70. Zhang W, Edwards A, Fang Z et al (2016) Integrative genomics and transcriptomics analysis reveals potential mechanisms for favorable prognosis of patients with HPV-positive head and neck carcinomas. Sci Rep 6:1–14. https://doi.org/10.1038/srep24927

    Article  CAS  Google Scholar 

  71. Thomas MC, Chiang CM (2005) E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 17:251–264. https://doi.org/10.1016/j.molcel.2004.12.016

    Article  CAS  Google Scholar 

  72. Karimian A, Ahmadi Y, Yousefi B (2016) Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 42:63–71. https://doi.org/10.1016/j.dnarep.2016.04.008

    Article  CAS  Google Scholar 

  73. Benson EK, Mungamuri SK, Attie O et al (2014) P53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes. Oncogene 33:3959–3969. https://doi.org/10.1038/onc.2013.378

    Article  CAS  Google Scholar 

  74. Sahin F, Sladek TL (2010) E2F–1 has dual roles depending on the cell cycle. Int J Biol Sci 6:116–128. https://doi.org/10.7150/ijbs.6.116

    Article  CAS  Google Scholar 

  75. Lu HJ, Jin PY, Tang Y et al (2018) microRNA-136 inhibits proliferation and promotes apoptosis and radiosensitivity of cervical carcinoma through the NF-κB pathway by targeting E2F1. Life Sci 199:167–178. https://doi.org/10.1016/j.lfs.2018.02.016

    Article  CAS  Google Scholar 

  76. Yang C, Zhang ZC, Liu TB et al (2020) E2F1/2/7/8 as independent indicators of survival in patients with cervical squamous cell carcinoma. Cancer Cell Int 20:500. https://doi.org/10.1186/s12935-020-01594-0

    Article  CAS  Google Scholar 

  77. Shaikh F, Sanehi P, Rawal R (2012) Molecular screening of compounds to the predicted protein–protein interaction site of Rb1-E7 with p53–E6 in HPV. Bioinformation 8:607–612. https://doi.org/10.6026/97320630008607

    Article  Google Scholar 

  78. Nazıroğlu M, Blum W, Jósvay K et al (2018) Menthol evokes Ca2+ signals and induces oxidative stress independently of the presence of TRPM8 (menthol) receptor in cancer cells. Redox Biol 14:439–449. https://doi.org/10.1016/j.redox.2017.10.009

    Article  CAS  Google Scholar 

  79. Voce DJ, Schmitt AM, Uppal A et al (2015) Nfkb1 is a haploinsufficient DNA damage-specific tumor suppressor. Oncogene 34:2807–2813. https://doi.org/10.1038/onc.2014.211

    Article  CAS  Google Scholar 

  80. Kravtsova-Ivantsiv Y, Shomer I, Cohen-Kaplan V et al (2015) KPC1-mediated ubiquitination and proteasomal processing of nf-κb1 p105 to p50 restricts tumor growth. Cell 161:333–347. https://doi.org/10.1016/j.cell.2015.03.001

    Article  CAS  Google Scholar 

  81. Yang D, Zhang W, Liang JQ et al (2018) Single cell whole genome sequencing reveals that NFKB1 mutation affects radiotherapy sensitivity in cervical cancer. Oncotarget 9:7332–7340. https://doi.org/10.18632/oncotarget.23587

    Article  Google Scholar 

  82. Kim SH, Park EJ, Lee CR et al (2012) Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int J Oncol 40:1683–1690. https://doi.org/10.3892/ijo.2011.1318

    Article  CAS  Google Scholar 

  83. Hahne JC, Honig A, Meyer SR et al (2012) Downregulation of AKT reverses platinum resistance of human ovarian cancers in vitro. Oncol Rep 28:2023–2028. https://doi.org/10.3892/or.2012.2041

    Article  CAS  Google Scholar 

  84. Sidhu H, Capalash N (2021) Synergistic anti-cancer action of salicylic acid and cisplatin on HeLa cells elucidated by network pharmacology and in vitro analysis. Life Sci 282:119802. https://doi.org/10.1016/j.lfs.2021.119802

    Article  CAS  Google Scholar 

  85. Christofori G (2003) Changing neighbours, changing behavior: cell adhesion molecule-mediated signalling during tumour progression. EMBO J 22:2318–2323. https://doi.org/10.1093/emboj/cdg228

    Article  CAS  Google Scholar 

  86. Xiao Y, Cheng H, Wang L, Yu X (2020) Clinical response and safety of apatinib monotherapy in recurrent, metastatic cervical cancer after failure of chemotherapy: a retrospective study. J Gynecol Oncol. https://doi.org/10.3802/jgo.2020.31.e2

    Article  Google Scholar 

  87. Zhang T, Zhang W, Hao M (2021) Phenethyl isothiocyanate reduces breast cancer stem cell-like properties by epigenetic reactivation of CDH1. Oncol Rep 45:337–348. https://doi.org/10.3892/or.2020.7860

    Article  CAS  Google Scholar 

  88. Li Q, Zhou ZW, Duan W et al (2021) Inhibiting the redox function of APE1 suppresses cervical cancer metastasis via disengagement of ZEB1 from E-cadherin in EMT. J Exp Clin Cancer Res 40:1–13. https://doi.org/10.1186/s13046-021-02006-5

    Article  CAS  Google Scholar 

  89. Kedhari Sundaram M, Hussain A, Haque S et al (2019) Quercetin modifies 5′ CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem 120:18357–18369. https://doi.org/10.1002/jcb.29147

    Article  CAS  Google Scholar 

  90. Li J, Khan M, Wei C et al (2017) Thymoquinone inhibits the migration and invasive characteristics of cervical cancer cells SiHa and CaSki in vitro by targeting epithelial to mesenchymal transition associated transcription factors Twist1 and Zeb1. Molecules 22:2105. https://doi.org/10.3390/molecules22122105

    Article  CAS  Google Scholar 

  91. Shen KH, Hung JH, Liao YC et al (2020) Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPS. Int J Mol Sci 21:3080. https://doi.org/10.3390/ijms21093080

    Article  CAS  Google Scholar 

  92. Wu MH, Lin CL, Chiou HL et al (2018) Praeruptorin a inhibits human cervical cancer cell growth and invasion by suppressing MMP-2 expression and ERK1/2 signaling. Int J Mol Sci 19:10. https://doi.org/10.3390/ijms19010010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Harsimran Sidhu acknowledges research fellowship from Indian Council of Medical Research, New Delhi, India.

Funding

This work was supported by University Grants Commission, New Delhi, India {F. No. 43–72/2014 (SR)}.

Author information

Authors and Affiliations

Authors

Contributions

HS: Conceptualization, investigation, methodology, validation, formal analysis, writing original draft, writing-review and editing, visualization. LKG: Methodology, formal analysis, writing of molecular dynamics simulation by GROMACS. NC: Conceptualization, validation, resources, writing-review and editing, visualization, project administration, supervision, funding acquisition.

Corresponding author

Correspondence to Neena Capalash.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidhu, H., Gautam, L.K. & Capalash, N. Unraveling the molecular mechanism of l-menthol against cervical cancer based on network pharmacology, molecular docking and in vitro analysis. Mol Divers 27, 323–340 (2023). https://doi.org/10.1007/s11030-022-10429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10429-1

Keywords

Navigation