Skip to main content
Log in

A comparison of various optimization algorithms of protein–ligand docking programs by fitness accuracy

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In protein–ligand docking, an optimization algorithm is used to find the best binding pose of a ligand against a protein target. This algorithm plays a vital role in determining the docking accuracy. To evaluate the relative performance of different optimization algorithms and provide guidance for real applications, we performed a comparative study on six efficient optimization algorithms, containing two evolutionary algorithm (EA)-based optimizers (LGA, DockDE) and four particle swarm optimization (PSO)-based optimizers (SODock, varCPSO, varCPSO-ls, FIPSDock), which were implemented into the protein–ligand docking program AutoDock. We unified the objective functions by applying the same scoring function, and built a new fitness accuracy as the evaluation criterion that incorporates optimization accuracy, robustness, and efficiency. The varCPSO and varCPSO-ls algorithms show high efficiency with fast convergence speed. However, their accuracy is not optimal, as they cannot reach very low energies. SODock has the highest accuracy and robustness. In addition, SODock shows good performance in efficiency when optimizing drug-like ligands with less than ten rotatable bonds. FIPSDock shows excellent robustness and is close to SODock in accuracy and efficiency. In general, the four PSO-based algorithms show superior performance than the two EA-based algorithms, especially for highly flexible ligands. Our method can be regarded as a reference for the validation of new optimization algorithms in protein–ligand docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153:S7–S26

    Article  CAS  Google Scholar 

  2. Huang SY, Zou XQ (2010) Advances and challenges in protein–ligand docking. Int J Mol Sci 11:3016–3034

    Article  CAS  Google Scholar 

  3. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  4. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  5. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins Struct Funct Genet 8:195–202

    Article  CAS  Google Scholar 

  6. Westhead DR, Clark DE, Murray CW (1997) A comparison of heuristic search algorithms for molecular docking. J Comput Aided Mol Des 11:209–228

    Article  CAS  Google Scholar 

  7. Baxter CA, Murray CW, Clark DE, Westhead DR, Eldridge MD (1998) Flexible docking using tabu search and an empirical estimate of binding affinity. Protein Struct Funct Genet 33:367–382

    Article  CAS  Google Scholar 

  8. Korb O, Stützle T, Exner TE (2006) PLANTS: application of ant colony optimization to structure-based drug design. Lect Notes Comput Sc 4150:247–358

    Article  Google Scholar 

  9. Korb O, Stützle T, Exner TE (2007) An ant colony optimization approach to flexible protein–ligand docking. Swarm Intell 1:115–134

    Article  Google Scholar 

  10. Korb O, Monecke P, Hessler G, Stützle T, Exner TE (2010) pharmACOphore: multiple flexible ligand alignment based on ant colony optimization. J Chem Inf Model 50:1669–1681

    Article  CAS  Google Scholar 

  11. Shin WH, Heo L, Lee J, Ko J, Seok C, Lee J (2011) LigDockCSA: protein–ligand docking using conformational space annealing. J Comput Chem 32:3226–3232

    Article  CAS  Google Scholar 

  12. Chen K, Li TH, Cao TC (2006) Tribe-PSO: a novel global optimization algorithm and its application in molecular docking. Chemom Intell Lab 82:248–259

    Article  CAS  Google Scholar 

  13. Janson S, Merkle D, Middendorf M (2008) Molecular docking with multi-objective particle swarm optimization. Appl Soft Comput 8:666–675

    Article  Google Scholar 

  14. Chen HM, Liu BF, Huang HL, Hwang SF, Ho SY (2007) SODOCK: swarm optimization for highly flexible protein–ligand docking. J Comput Chem 28:612–623

    Article  CAS  Google Scholar 

  15. Namasivayam V, Günther R (2007) PSO@AUTODOCK: a fast flexible molecular docking program based on swarm intelligence. Chem Biol Drug Des 70:475–484

    Article  CAS  Google Scholar 

  16. Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y (2013) FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm. J Comput Chem 34:67–75

    Article  Google Scholar 

  17. Thomsen R (2003) Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72:57–73

  18. Thomsen R (2003) Flexible ligand docking using differential evolution. IEEE Congr Evol Comput CEC 4:2354–2361

    Google Scholar 

  19. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  Google Scholar 

  20. Fuhrmann J, Rurainski A, Lenhof HP, Neumann D (2010) A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 31:1911–1918

    CAS  Google Scholar 

  21. Cao TC, Li TH (2004) A combination of numeric genetic algorithm and tabu search can be applied to molecular docking. Comput Biol Chem 28:303–312

    Article  CAS  Google Scholar 

  22. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL 3rd (2004) Assessing scoring functions for protein–ligand interactions. J Med Chem 47:3032–3047

    Article  CAS  Google Scholar 

  23. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55:288–304

    Article  CAS  Google Scholar 

  24. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific LLC. http://www.pymol.org

  25. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  26. Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6:19–30

    Article  Google Scholar 

  27. Storn R, Price K (1997) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  Google Scholar 

  28. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Trans Neural Netw 4:1942–1948

    Google Scholar 

  29. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. IEEE Int Conf Evol Comput, Anchorage, pp 69–73

    Google Scholar 

  30. Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. IEEE Trans Evol Comput 1:84–88

    Google Scholar 

  31. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8:204–210

    Article  Google Scholar 

  32. Nissink JW, Murray C, Hartshorn M, Verdonk ML, Cole JC, Taylor R (2002) A new test set for validating predictions of protein–ligand interaction. Protein Struct Funct Genet 49:457–471

    Article  CAS  Google Scholar 

  33. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  Google Scholar 

  34. Yan Z, Wang J (2012) Specificity quantification of biomolecular recognition and its implication for drug discovery. Sci Rep 2:309

    Google Scholar 

  35. Krink T, Vesterstrom JS, Riget J (2002) Particle swarm optimisation with spatial particle extension. IEEE Trans Evol Comput 2:1474–1479

    Google Scholar 

  36. Langdon WB, Poli R (2007) Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Trans Evol Comput 11:561–578

    Article  Google Scholar 

  37. Storn R (2008) Differential evolution research—trends and open questions. In: Chakraborty UK (ed) Advances in Differential Evolution. Springer, Berlin Heidelberg New York, pp 1–31

  38. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15:4–31

    Article  Google Scholar 

  39. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

Download references

Acknowledgments

JW thanks the National Science Foundation for support. We thank Xiakun Chu for polishing the manuscript and Erkang Wang for enlightening comments on the research. LYG, ZQY, and XLZ are supported by the National Natural Science Foundation of China (Grants 21190040, 11174105 and 91227114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Yan, Z., Zheng, X. et al. A comparison of various optimization algorithms of protein–ligand docking programs by fitness accuracy. J Mol Model 20, 2251 (2014). https://doi.org/10.1007/s00894-014-2251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2251-3

Keywords

Navigation