Fillinger S, de la Garza L, Peltzer A et al (2019) Challenges of big data integration in the life sciences. Anal Bioanal Chem 411:6791–6800. https://doi.org/10.1007/s00216-019-02074-9
CAS
Article
PubMed
Google Scholar
Panteleev J, Gao H, Jia L (2018) Recent applications of machine learning in medicinal chemistry. Bioorg Med Chem Lett 28:2807–2815. https://doi.org/10.1016/j.bmcl.2018.06.046
CAS
Article
PubMed
Google Scholar
Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manage 35:137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Article
Google Scholar
Piir G, Kahn I, García-Sosa AT et al (2018) Best practices for QSAR model reporting: physical and chemical properties, ecotoxicity, environmental fate, human health, and toxicokinetics endpoints. Environ Health Perspect. https://doi.org/10.1289/EHP3264
Article
PubMed
PubMed Central
Google Scholar
Lima AN, Philot EA, Trossini GHG et al (2016) Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov 11:225–239. https://doi.org/10.1517/17460441.2016.1146250
CAS
Article
PubMed
Google Scholar
Schneider G Prediction of drug-like properties. In: Madame Curie Biosci. Database [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK6404/
Domenico A, Nicola G, Daniela T et al (2020) De novo drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization. J Chem Inf Model 60:4582–4593. https://doi.org/10.1021/acs.jcim.0c00517
CAS
Article
PubMed
Google Scholar
Cortés-Ciriano I, Firth NC, Bender A, Watson O (2018) Discovering highly potent molecules from an initial set of inactives using iterative screening. J Chem Inf Model 58:2000–2014. https://doi.org/10.1021/acs.jcim.8b00376
CAS
Article
PubMed
Google Scholar
von der Esch B, Dietschreit JCB, Peters LDM, Ochsenfeld C (2019) Finding reactive configurations: a machine learning approach for estimating energy barriers applied to Sirtuin 5. J Chem Theory Comput 15:6660–6667. https://doi.org/10.1021/acs.jctc.9b00876
CAS
Article
PubMed
Google Scholar
Lim S, Lu Y, Cho CY et al (2021) A review on compound-protein interaction prediction methods: data, format, representation and model. Comput Struct Biotechnol J 19:1541–1556. https://doi.org/10.1016/j.csbj.2021.03.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Haghighatlari M, Li J, Heidar-Zadeh F et al (2020) Learning to make chemical predictions: the interplay of feature representation, data, and machine learning methods. Chem 6:1527–1542. https://doi.org/10.1016/j.chempr.2020.05.014
CAS
Article
PubMed
PubMed Central
Google Scholar
Rodríguez-Pérez R, Bajorath J (2020) Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values. J Med Chem 63:8761–8777. https://doi.org/10.1021/acs.jmedchem.9b01101
CAS
Article
PubMed
Google Scholar
Rücker C, Rücker G, Meringer M (2007) Y-randomization and its variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357. https://doi.org/10.1021/ci700157b
CAS
Article
PubMed
Google Scholar
Bro R, Kjeldahl K, Smilde AK, Kiers HAL (2008) Cross-validation of component models: a critical look at current methods. Anal Bioanal Chem 390:1241–1251. https://doi.org/10.1007/s00216-007-1790-1
CAS
Article
PubMed
Google Scholar
Filzmoser P, Liebmann B, Varmuza K (2009) Repeated double cross validation. J Chemom 23:160–171. https://doi.org/10.1002/cem.1225
CAS
Article
Google Scholar
Rácz A, Bajusz D, Héberger K (2018) Modelling methods and cross-validation variants in QSAR: a multi-level analysis $. SAR QSAR Environ Res 29:661–674. https://doi.org/10.1080/1062936X.2018.1505778
Article
PubMed
Google Scholar
Montanari F, Zdrazil B, Digles D, Ecker GF (2016) Selectivity profiling of BCRP versus P-gp inhibition: from automated collection of polypharmacology data to multi-label learning. J Cheminform 8:7. https://doi.org/10.1186/s13321-016-0121-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Wenzel J, Matter H, Schmidt F (2019) Predictive multitask deep neural network models for ADME-Tox properties: learning from large data sets. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.8b00785
Article
PubMed
PubMed Central
Google Scholar
Zhang MH, Xu QS, Daeyaert F et al (2005) Application of boosting to classification problems in chemometrics. Anal Chim Acta 544:167–176. https://doi.org/10.1016/j.aca.2005.01.075
CAS
Article
Google Scholar
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Monterey
Google Scholar
Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA, (pp 785–794)
Salt DW, Yildiz N, Livingstone DJ, Tinsley CJ (1992) The use of artificial neural networks in QSAR. Pestic Sci 36(2):161–170. https://doi.org/10.1002/ps.2780360212
CAS
Article
Google Scholar
Chen H, Engkvist O, Wang Y et al (2018) The rise of deep learning in drug discovery. Drug Discov Today 23(6):1241–1250
Article
Google Scholar
Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958
Google Scholar
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Google Scholar
Brereton RG, Lloyd GR (2009) Support vector machines for classification and regression. Analyst 135:230–267
Article
Google Scholar
John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: UAI’95 Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp 338–345)
Kowalski BR, Bender CF (1972) The K-nearest neighbor classification rule (pattern recognition) applied to nuclear magnetic resonance spectral interpretation. Anal Chem 44:1405–1411. https://doi.org/10.1021/ac60316a008
CAS
Article
Google Scholar
Kramer O (2013) K-Nearest Neighbors. Dimensionality reduction with unsupervised nearest neighbors. Springer, Berlin Heidelberg, pp 13–23. https://doi.org/10.1007/978-3-642-38652-7_2
Chapter
Google Scholar
Todeschini R, Ballabio D, Cassotti M, Consonni V (2015) N3 and BNN: two new similarity based classification methods in comparison with other classifiers. J Chem Inf Model 55:2365–2374. https://doi.org/10.1021/acs.jcim.5b00326
CAS
Article
PubMed
Google Scholar
Vandenberg JI, Perry MD, Perrin MJ et al (2012) hERG K + Channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478. https://doi.org/10.1152/physrev.00036.2011
CAS
Article
PubMed
Google Scholar
Polonchuk L (2012) Toward a new gold standard for early safety: automated temperature-controlled hERG test on the PatchLiner®. Front Pharmacol. https://doi.org/10.3389/fphar.2012.00003
Article
PubMed
PubMed Central
Google Scholar
Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch-Eur J Physiol 391(2):85–100. https://doi.org/10.1007/BF00656997
CAS
Article
Google Scholar
Weaver CD, Harden D, Dworetzky SI et al (2004) A Thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells. J Biomol Screen 9:671–677. https://doi.org/10.1177/1087057104268749
CAS
Article
PubMed
Google Scholar
Weaver CD (2018) Thallium flux assay for measuring the activity of monovalent cation channels and transporters. In: Shyng SL, Valiyaveetil FI, Whorton M (eds) Potassium channels: methods and protocols. Springer, New York
Google Scholar
Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. In: Dixon DA, Chair RR (eds) Annual reports in computational chemistry. Elsevier, Amsterdam, pp 217–241
Google Scholar
Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. https://doi.org/10.1093/nar/gkr777
CAS
Article
PubMed
Google Scholar
Braga RC, Alves VM, Silva MFB et al (2015) Pred-hERG: A Novel web-accessible computational tool for predicting cardiac toxicity. Mol Inform 34:698–701. https://doi.org/10.1002/minf.201500040
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun H, Huang R, Xia M et al (2017) Prediction of hERG Liability—Using SVM classification Bootstrapping and Jackknifing. Mol Inform 36:1600126. https://doi.org/10.1002/minf.201600126
CAS
Article
Google Scholar
Konda LSK, KeerthiPraba S, Kristam R (2019) hERG liability classification models using machine learning techniques. Comput Toxicol. https://doi.org/10.1016/j.comtox.2019.100089
Article
Google Scholar
Zhang C, Zhou Y, Gu S et al (2016) In silico prediction of hERG potassium channel blockage by chemical category approaches. Toxicol Res (Camb) 5:570–582. https://doi.org/10.1039/c5tx00294j
CAS
Article
Google Scholar
Li X, Zhang Y, Li H, Zhao Y (2017) Modeling of the hERG K+ Channel blockage using online chemical database and modeling environment (OCHEM). Mol Inform 36:1700074. https://doi.org/10.1002/minf.201700074
CAS
Article
Google Scholar
Alves VM, Golbraikh A, Capuzzi SJ et al (2018) Multi-Descriptor read across (MuDRA): a simple and transparent approach for developing accurate quantitative structure-activity relationship models. J Chem Inf Model 58:1214–1223. https://doi.org/10.1021/acs.jcim.8b00124
CAS
Article
PubMed
PubMed Central
Google Scholar
Siramshetty VB, Chen Q, Devarakonda P, Preissner R (2018) The Catch-22 of predicting hERG Blockade using publicly accessible bioactivity data. J Chem Inf Model 58:1224–1233. https://doi.org/10.1021/acs.jcim.8b00150
CAS
Article
PubMed
Google Scholar
Siramshetty VB, Nguyen D-T, Martinez NJ et al (2020) Critical assessment of artificial intelligence methods for prediction of hERG channel inhibition in the “Big Data” Era. J Chem Inf Model 60:6007–6019. https://doi.org/10.1021/acs.jcim.0c00884
CAS
Article
PubMed
Google Scholar
Liu M, Zhang L, Li S et al (2020) Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints. Toxicol Lett 332:88–96. https://doi.org/10.1016/j.toxlet.2020.07.003
CAS
Article
PubMed
Google Scholar
Kim H, Nam H (2020) hERG-Att: self-attention-based deep neural network for predicting hERG blockers. Comput Biol Chem. https://doi.org/10.1016/j.compbiolchem.2020.107286
Article
PubMed
Google Scholar
Ogura K, Sato T, Yuki H, Honma T (2019) Support vector machine model for hERG inhibitory activities based on the integrated hERG database using descriptor selection by NSGA-II. Sci Rep 9:12220. https://doi.org/10.1038/s41598-019-47536-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee H-M, Yu M-S, Kazmi SR et al (2019) Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinform 20:250. https://doi.org/10.1186/s12859-019-2814-5
CAS
Article
Google Scholar
Choi K-E, Balupuri A, Kang NS (2020) The study on the hERG blocker prediction using chemical fingerprint analysis. Molecules 25:2615. https://doi.org/10.3390/molecules25112615
CAS
Article
PubMed Central
Google Scholar
Wang Y, Huang L, Jiang S et al (2020) Capsule networks showed excellent performance in the classification of hERG blockers/nonblockers. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01631
Article
PubMed
PubMed Central
Google Scholar
Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a020412
Article
PubMed
PubMed Central
Google Scholar
Kaisar MA, Sajja RK, Prasad S et al (2017) New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opin Drug Discov 12:89–103. https://doi.org/10.1080/17460441.2017.1253676
Article
PubMed
Google Scholar
Abraham MH, Ibrahim A, Zhao Y, Acree WE (2006) A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. J Pharm Sci 95:2091–2100. https://doi.org/10.1002/jps.20595
CAS
Article
PubMed
Google Scholar
Zhang L, Zhu H, Oprea TI et al (2008) QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm Res 25(8):1902–1914. https://doi.org/10.1007/s11095-008-9609-0
CAS
Article
PubMed
Google Scholar
Zhang X, Liu T, Fan X, Ai N (2017) In silico modeling on ADME properties of natural products: classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. J Mol Graph Model 75:347–354. https://doi.org/10.1016/j.jmgm.2017.05.021
CAS
Article
PubMed
Google Scholar
Yuan Y, Zheng F, Zhan C-G (2018) Improved prediction of blood-brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints. AAPS J 20:54. https://doi.org/10.1208/s12248-018-0215-8
CAS
Article
PubMed
Google Scholar
Wang Z, Yang H, Wu Z et al (2018) In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods. Chem Med Chem 13:2189–2201. https://doi.org/10.1002/cmdc.201800533
CAS
Article
PubMed
Google Scholar
Roy D, Hinge VK, Kovalenko A (2019) To pass or not to pass: predicting the blood-brain barrier permeability with the 3D-RISM-KH molecular solvation theory. ACS Omega 4(16):16774–16780. https://doi.org/10.1021/acsomega.9b01512
CAS
Article
PubMed
PubMed Central
Google Scholar
Shi T, Yang Y, Huang S et al (2019) Molecular image-based convolutional neural network for the prediction of ADMET properties. Chemom Intell Lab Syst. https://doi.org/10.1016/j.chemolab.2019.103853
Article
Google Scholar
Li X, Fourches D (2020) Inductive transfer learning for molecular activity prediction: next-gen QSAR models with MolPMoFiT. J Cheminform 12:27. https://doi.org/10.1186/s13321-020-00430-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Shi Z, Chu Y, Zhang Y et al (2021) Prediction of blood-brain barrier permeability of compounds by fusing resampling strategies and eXtreme gradient boosting. IEEE Access 9:9557–9566. https://doi.org/10.1109/ACCESS.2020.3047852
Article
Google Scholar
Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW (1998) The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci 95:7024–7029. https://doi.org/10.1073/pnas.95.12.7024
CAS
Article
PubMed
PubMed Central
Google Scholar
Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699. https://doi.org/10.1007/s00018-003-3336-9
CAS
Article
PubMed
Google Scholar
Leslie EM, Deeley RG, Cole SPC (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204:216–237. https://doi.org/10.1016/j.taap.2004.10.012
CAS
Article
PubMed
Google Scholar
Prachayasittikul V, Worachartcheewan A, Shoombuatong W et al (2015) Classification of P-glycoprotein-interacting compounds using machine learning methods. EXCLI J 14:958–970
PubMed
PubMed Central
Google Scholar
Hinge VK, Roy D, Kovalenko A (2019) Prediction of P-glycoprotein inhibitors with machine learning classification models and 3D-RISM-KH theory based solvation energy descriptors. J Comput Aided Mol Des 33(11):965–971. https://doi.org/10.1007/s10822-019-00253-5
CAS
Article
PubMed
Google Scholar
Wang PH, Tu YS, Tseng YJ (2019) PgpRules: a decision tree based prediction server for P-glycoprotein substrates and inhibitors. Bioinformatics 35(20):4193–4195. https://doi.org/10.1093/bioinformatics/btz213
CAS
Article
PubMed
Google Scholar
Ngo TD, Tran TD, Le MT, Thai KM (2016) Machine learning-, rule—and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA. SAR QSAR Environ Res 27(9):747–780. https://doi.org/10.1080/1062936X.2016.1233137
CAS
Article
PubMed
Google Scholar
Prachayasittikul V, Worachartcheewan A, Toropova AP et al (2017) Large-scale classification of P-glycoprotein inhibitors using SMILES-based descriptors. SAR QSAR Environ Res 28:1–16. https://doi.org/10.1080/1062936X.2016.1264468
CAS
Article
PubMed
Google Scholar
CerruelaGarcía G, García-Pedrajas N (2018) Boosted feature selectors: a case study on prediction P-gp inhibitors and substrates. J Comput Aided Mol Des 32(11):1273–1294. https://doi.org/10.1007/s10822-018-0171-5
CAS
Article
Google Scholar
Yang M, Chen J, Shi X et al (2015) Development of in silico models for predicting p-glycoprotein inhibitors based on a two-step approach for feature selection and its application to Chinese herbal medicine screening. Mol Pharm 12:3691–3713. https://doi.org/10.1021/acs.molpharmaceut.5b00465
CAS
Article
PubMed
Google Scholar
Esposito C, Wang S, Lange UEW et al (2020) Combining machine learning and molecular dynamics to predict P-Glycoprotein substrates. J Chem Inf Model 60:4730–4749. https://doi.org/10.1021/acs.jcim.0c00525
CAS
Article
PubMed
Google Scholar
Rácz A, Keserű GM (2020) Large-scale evaluation of cytochrome P450 2C9 mediated drug interaction potential with machine learning-based consensus modeling. J Comput Aided Mol Des 34:831–839. https://doi.org/10.1007/s10822-020-00308-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Kato H (2019) Computational prediction of cytochrome P450 inhibition and induction. Drug Metab Pharmacokinet. https://doi.org/10.1016/J.DMPK.2019.11.006
Article
PubMed
Google Scholar
Pan X, Chao L, Qu S et al (2015) An improved large-scale prediction model of CYP1A2 inhibitors by using combined fragment descriptors. RSC Adv 5:84232–84237. https://doi.org/10.1039/c5ra17196b
CAS
Article
Google Scholar
Pang X, Zhang B, Mu G et al (2018) Screening of cytochrome P450 3A4 inhibitors via in silico and in vitro approaches. RSC Adv 8:34783–34792. https://doi.org/10.1039/c8ra06311g
CAS
Article
Google Scholar
Yu L, Shi X, Tian S et al (2017) Classification of cytochrome P450 1A2 Inhibitors and noninhibitors based on deep belief network. Int J Comput Intell Appl 16:1–17. https://doi.org/10.1142/S146902681750002X
Article
Google Scholar
Su BH, Tu YS, Lin C et al (2015) Rule-based prediction models of cytochrome P450 inhibition. J Chem Inf Model 55:1426–1434. https://doi.org/10.1021/acs.jcim.5b00130
CAS
Article
PubMed
Google Scholar
Lee JH, Basith S, Cui M et al (2017) In silico prediction of multiple-category classification model for cytochrome P450 inhibitors and non-inhibitors using machine-learning method$. SAR QSAR Environ Res 28:863–874. https://doi.org/10.1080/1062936X.2017.1399925
CAS
Article
PubMed
Google Scholar
Wu Z, Lei T, Shen C et al (2019) ADMET evaluation in drug discovery. 19. Reliable prediction of human cytochrome P450 inhibition using artificial intelligence approaches. J Chem Inf Model 59:4587–4601. https://doi.org/10.1021/acs.jcim.9b00801
CAS
Article
PubMed
Google Scholar
Nembri S, Grisoni F, Consonni V, Todeschini R (2016) In silico prediction of cytochrome P450-Drug interaction : QSARs for CYP3A4 and CYP2C9. Int J Mol Sci 17:914. https://doi.org/10.3390/ijms17060914
Article
PubMed Central
Google Scholar
Li X, Xu Y, Lai L, Pei J (2018) Prediction of human cytochrome P450 inhibition using a multitask deep autoencoder neural network. Mol Pharm 15:4336–4345. https://doi.org/10.1021/acs.molpharmaceut.8b00110
CAS
Article
PubMed
Google Scholar
Yang H, Sun L, Li W et al (2018) In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem 6:1–12. https://doi.org/10.3389/fchem.2018.00030
CAS
Article
Google Scholar
Xu Y, Pei J, Lai L (2017) Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J Chem Inf Model 57:2672–2685. https://doi.org/10.1021/acs.jcim.7b00244
CAS
Article
PubMed
Google Scholar
Gadaleta D, Vuković K, Toma C et al (2019) SAR and QSAR modeling of a large collection of LD 50 rat acute oral toxicity data. J Cheminform. https://doi.org/10.1186/s13321-019-0383-2
Article
PubMed
PubMed Central
Google Scholar
Ballabio D, Grisoni F, Consonni V, Todeschini R (2019) Integrated QSAR models to predict acute oral systemic toxicity. Mol Inform 38:1800124. https://doi.org/10.1002/minf.201800124
CAS
Article
Google Scholar
Li X, Kleinstreuer NC, Fourches D (2020) Hierarchical quantitative structure—activity relationship modeling approach for integrating binary, multiclass, and regression models of acute oral systemic toxicity. Chem Res Toxicol. https://doi.org/10.1021/acs.chemrestox.9b00259
Article
PubMed
PubMed Central
Google Scholar
Chemical hazard classification and labeling - US EPA. www.epa.gov/sites/production/files/2015-09/documents/ghscriteria-summary.pdf
Globally harmonized system of classification and labelling of chemicals (GHS)https://pubchem.ncbi.nlm.nih.gov/ghs/
Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 14:10. https://doi.org/10.1186/s12916-016-0553-2
Article
PubMed
PubMed Central
Google Scholar
Jacobs AC, Brown PC (2015) Regulatory forum opinion piece*. Toxicol Pathol 43:605–610. https://doi.org/10.1177/0192623314566241
CAS
Article
PubMed
Google Scholar
Li X, Du Z, Wang J et al (2015) In silico estimation of chemical carcinogenicity with binary and ternary classification methods. Mol Inform 34:228–235. https://doi.org/10.1002/minf.201400127
CAS
Article
PubMed
Google Scholar
Zhang H, Cao ZX, Li M et al (2016) Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals. Food Chem Toxicol 97:141–149. https://doi.org/10.1016/j.fct.2016.09.005
CAS
Article
PubMed
Google Scholar
Zhang L, Ai H, Chen W et al (2017) CarcinoPred-EL: novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Sci Rep 7:2118. https://doi.org/10.1038/s41598-017-02365-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Benigni R, Bossa C, Tcheremenskaia O, Giuliani A (2010) Alternatives to the carcinogenicity bioassay: in silico methods, and the in vitro and in vivo mutagenicity assays. Expert Opin Drug Metab Toxicol 6:809–819. https://doi.org/10.1517/17425255.2010.486400
CAS
Article
PubMed
Google Scholar
Fitzpatrick RB (2008) CPDB: carcinogenic potency database. Med Ref Serv Q 27:303–311. https://doi.org/10.1080/02763860802198895
Article
PubMed
Google Scholar
Escobar PA, Kemper RA, Tarca J et al (2013) Bacterial mutagenicity screening in the pharmaceutical industry. Mutat Res-Rev Mutat Res 752:99–118. https://doi.org/10.1016/j.mrrev.2012.12.002
CAS
Article
Google Scholar
Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system. Mutat Res 21:209–210
Google Scholar
Zhang H, Kang YL, Zhu YY et al (2017) Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity. Toxicol Vitr 41:56–63. https://doi.org/10.1016/j.tiv.2017.02.016
CAS
Article
Google Scholar
Li S, Zhang L, Feng H et al (2021) MutagenPred-GCNNs: a graph convolutional neural network-based classification model for mutagenicity prediction with data-driven molecular fingerprints. Interdiscip Sci Comput Life Sci 13:25–33. https://doi.org/10.1007/s12539-020-00407-2
CAS
Article
Google Scholar
CerruelaGarcía G, García-Pedrajas N, Luque Ruiz I, Gómez-Nieto MÁ (2018) An ensemble approach for in silico prediction of Ames mutagenicity. J Math Chem 56:2085–2098. https://doi.org/10.1007/s10910-018-0855-z
CAS
Article
Google Scholar
Zhang J, Mucs D, Norinder U, Svensson F (2019) LightGBM: an effective and scalable algorithm for prediction of chemical toxicity-application to the Tox21 and mutagenicity data sets. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.9b00633
Article
PubMed
PubMed Central
Google Scholar
Hansen K, Mika S, Schroeter T et al (2009) Benchmark data set for in silico prediction of Ames mutagenicity. J Chem Inf Model 49:2077–2081. https://doi.org/10.1021/ci900161g
CAS
Article
PubMed
Google Scholar
Kubo K, Azuma A, Kanazawa M et al (2013) Consensus statement for the diagnosis and treatment of drug-induced lung injuries. Respir Investig 51:260–277. https://doi.org/10.1016/j.resinv.2013.09.001
Article
PubMed
Google Scholar
Lei T, Chen F, Liu H et al (2017) ADMET evaluation in drug discovery. Part 17: development of quantitative and qualitative prediction models for chemical-induced respiratory toxicity. Mol Pharm 14:2407–2421. https://doi.org/10.1021/acs.molpharmaceut.7b00317
CAS
Article
PubMed
Google Scholar
Zhang H, Ma JX, Liu CT et al (2018) Development and evaluation of in silico prediction model for drug-induced respiratory toxicity by using naïve Bayes classifier method. Food Chem Toxicol 121:593–603. https://doi.org/10.1016/j.fct.2018.09.051
CAS
Article
PubMed
Google Scholar
Wang Z, Zhao P, Zhang X et al (2021) In silico prediction of chemical respiratory toxicity via machine learning. Comput Toxicol. https://doi.org/10.1016/j.comtox.2021.100155
Article
Google Scholar
Cai MC, Xu Q, Pan YJ et al (2015) ADReCS: an ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms. Nucleic Acids Res 43:D907–D913. https://doi.org/10.1093/nar/gku1066
CAS
Article
PubMed
Google Scholar
Verheyen GR, Braeken E, Van Deun K, Van Miert S (2017) Evaluation of existing (Q)SAR models for skin and eye irritation and corrosion to use for REACH registration. Toxicol Lett 265:47–52. https://doi.org/10.1016/j.toxlet.2016.11.007
CAS
Article
PubMed
Google Scholar
(ECHA) European chemicals agency (2015) Chapter R.7a: Endpoint specific guidance in: guidance on information requirements and chemical safety assessment. https://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf
Verma RP, Matthews EJ (2015) Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): Part I: Irritation potential. Regul Toxicol Pharmacol 71:318–330. https://doi.org/10.1016/j.yrtph.2014.11.011
CAS
Article
PubMed
Google Scholar
Wang Q, Li X, Yang H et al (2017) In silico prediction of serious eye irritation or corrosion potential of chemicals. RSC Adv 7:6697–6703. https://doi.org/10.1039/c6ra25267b
CAS
Article
Google Scholar
Shoombuatong W, Prathipati P, Prachayasittikul V, Schaduangrat N (2017) Towards predicting the cytochrome P450 modulation : from QSAR to proteochemometric modeling. Current Drug Metab. https://doi.org/10.2174/1389200218666170320121932
Article
Google Scholar
Rácz A, Bajusz D, Héberger K (2021) Effect of dataset size and train/test split ratios in QSAR/QSPR multiclass classification. Molecules 26(4):1111
Article
Google Scholar
Hall M, Frank E, Holmes G et al (2009) The WEKA data mining software. ACM SIGKDD Explor Newsl 11:10–18. https://doi.org/10.1145/1656274.1656278
Article
Google Scholar
Demsar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14:2349–2353. https://doi.org/10.5555/2567709.2567736
Article
Google Scholar
Dong J, Wang N-N, Yao Z-J et al (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform 10:29. https://doi.org/10.1186/s13321-018-0283-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Tian S, Djoumbou-Feunang Y, Greiner R, Wishart DS (2018) CypReact: a software tool for in silico reactant prediction for human cytochrome P450 enzymes. J Chem Inf Model 58:1282–1291. https://doi.org/10.1021/acs.jcim.8b00035
CAS
Article
PubMed
Google Scholar