Skip to main content
Log in

A green, catalyst-free synthesis of pyrazolopyranopyrimidines in polyethylene glycol as a biodegradable medium at ambient temperature

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A facile, efficient and environmentally safe strategy for the synthesis of pyrazolopyranopyrimidines via one-pot, four-component reaction of hydrazine hydrate, barbituric acid, ethyl acetoacetate, and aromatic aldehydes in polyethylene glycol (PEG) as a safe solvent in the absence of catalyst at ambient temperature has been described. The advantages of the present protocol, such as simplicity, mild conditions, high yields of products, straightforward workup procedure, a green and biodegradable reaction medium, make this new process an attractive to current methodologies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Bihani M, Bora PP, Bez G, Askari H (2014) A green four-component synthesis of zwitterionic alkyl/benzyl pyrazolyl barbiturates and their photophysical studies. Mol Divers 18:745–757. https://doi.org/10.1007/s11030-014-9532-8

    Article  CAS  PubMed  Google Scholar 

  2. Sindhu J, Singh H, Khurana J (2014) A green, multicomponent, regio-and stereo-selective 1, 3-dipolar cycloaddition of azides and azomethine ylides generated in situ with bifunctional dipolarophiles using PEG-400. Mol Divers 18:345–355. https://doi.org/10.1007/s11030-014-9505-y

    Article  CAS  PubMed  Google Scholar 

  3. Kausar N, Al Masum A, Islam MM, Das AR (2017) A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol Divers 21:325–337. https://doi.org/10.1007/s11030-017-9728-9

    Article  CAS  PubMed  Google Scholar 

  4. Khodabakhshi S, Rashidi A, Tavakoli Z, Baghernejad M, Yadegari A (2016) The first catalytic application of oxidized carbon nanotubes in a four-component synthesis of fused heterocycles. Monatsh Chem 147:791–795. https://doi.org/10.1007/s00706-015-1532-6

    Article  CAS  Google Scholar 

  5. Zheng Y-X, Xun Z, Zhang J-J, Huang Z-B, Shi D-Q (2017) An efficient one-pot synthesis of functionalized chromeno [4, 3-b] pyridine derivatives under catalyst-free conditions. Mol Divers 21:293–304. https://doi.org/10.1007/s11030-016-9723-6

    Article  CAS  PubMed  Google Scholar 

  6. Barve IJ, Chen C-H, Kao C-H, Sun C-M (2014) Regioselective piperidine-catalyzed tandem imination-isocyanate annulation to fused tricyclic triazines. ACS Comb Sci 16:244–249. https://doi.org/10.1021/co400159z

    Article  CAS  PubMed  Google Scholar 

  7. Ranatunga S, Tang C-HA, Kang CW, Kriss CL, Kloppenburg BJ, Hu C-CA, Del Valle JR (2014) Synthesis of novel tricyclic chromenone-based inhibitors of IRE-1 RNase activity. J Med Chem 57:4289–4301. https://doi.org/10.1021/jm5002452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams DR, Mondal PK, Bawel SA, Nag PP (2014) Stereocontrolled synthesis of the tricyclic ABC ring system of daphnicyclidin A. Org Lett 16:1956–1959. https://doi.org/10.1021/ol5005092

    Article  CAS  PubMed  Google Scholar 

  9. Oonishi Y, Kitano Y, Sato Y (2013) Construction of tricyclic pyran derivatives through intramolecular [2 + 2 + 2] cycloaddition of allenynes with tethered aldehydes. Tetrahedron 69:7713–7718. https://doi.org/10.1016/j.tet.2013.04.068

    Article  CAS  Google Scholar 

  10. Patil KT, Jamale DK, Valekar NJ, Patil PT, Warekar PP, Kolekar GB, Anbhule PV (2017) Uncatalyzed four-component synthesis of pyrazolopyranopyrimidine derivatives and their antituberculosis activities. Synth Commun 47:111–120. https://doi.org/10.1080/00397911.2016.1252046

    Article  CAS  Google Scholar 

  11. Dastkhoon S, Tavakoli Z, Khodabakhshi S, Baghernejad M, Abbasabadi MK (2015) Nanocatalytic one-pot, four-component synthesis of some new triheterocyclic compounds consisting of pyrazole, pyran, and pyrimidinone rings. New J Chem 39:7268–7271. https://doi.org/10.1039/C5NJ01046B

    Article  CAS  Google Scholar 

  12. Saha A, Payra S, Banerjee S (2015) One-pot multicomponent synthesis of highly functionalized bio-active pyrano [2, 3-c] pyrazole and benzylpyrazolyl coumarin derivatives using ZrO 2 nanoparticles as a reusable catalyst. Green Chem 17:2859–2866. https://doi.org/10.1039/C4GC02420F

    Article  CAS  Google Scholar 

  13. Kanagaraj K, Pitchumani K (2010) Solvent-free multicomponent synthesis of pyranopyrazoles: per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett 51:3312–3316. https://doi.org/10.1016/j.tetlet.2010.04.087

    Article  CAS  Google Scholar 

  14. Wang J-L, Liu D, Zhang Z-J, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97:7124–7129. https://doi.org/10.1073/pnas.97.13.7124

    Article  CAS  PubMed  Google Scholar 

  15. Rajendra Prasad Y, Lakshmana Rao A, Prasoona L, Murali K, Ravi Kumar P (2005) Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorg Med Chem Lett 15:5030–5034. https://doi.org/10.1016/j.bmcl.2005.08.040

    Article  CAS  PubMed  Google Scholar 

  16. Myrboh B, Mecadon H, Rohman MR, Rajbangshi M, Kharkongor I, Laloo BM, Kharbangar I, Kshiar B (2013) Synthetic developments in functionalized pyrano [2, 3-c] pyrazoles. A review. Org Prep Proced Int 45:253–303. https://doi.org/10.1080/00304948.2013.798566

    Article  CAS  Google Scholar 

  17. Maleki A, Jafari AA, Yousefi S (2017) Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr Polym 175:409–416. https://doi.org/10.1016/j.carbpol.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  18. Kiasat AR, Fallah-Mehrjardi M (2008) Polyethylene glycol: a cheap and efficient medium for the thiocyanation of alkyl halides. Bull Korean Chem Soc 29:2346–2348. https://doi.org/10.5012/bkcs.2008.29.12.2346

    Article  CAS  Google Scholar 

  19. Kardooni R, Kiasat AR (2018) Bifunctional PEG/NH2 silica-coated magnetic nanocomposite: an efficient and recoverable core–shell-structured catalyst for one pot multicomponent synthesis of 3-alkylated indoles via Yonemitsu-type condensation. J Taiwan Inst Chem Eng 87:241–251. https://doi.org/10.1016/j.jtice.2018.03.029

    Article  CAS  Google Scholar 

  20. Kardooni R, Kiasat AR, Motamedi H (2017) Designing of a novel dual-function silica-iron oxide hybrid based nanocomposite, Fe3O4@ SiO2-PEG/NH2, and its application as an eco-catalyst for the solvent-free synthesis of polyhydroacridines and polyhydroquinolines. J Taiwan Inst Chem Eng 81:373–382. https://doi.org/10.1016/j.jtice.2017.10.013

    Article  CAS  Google Scholar 

  21. Kiasat A, Fallah-Mehrjardi M (2009) An efficient catalyst-free ring opening of epoxides in peg-300: a versatile method for the synthesis of vicinal azidoalcohols. J Iran Chem Soc 6:542–546. https://doi.org/10.1007/BF03246533

    Article  CAS  Google Scholar 

  22. Rajanarendar E, Govardhan Reddy K, Nagi Reddy M, Raju S, Rama Murthy K (2011) Polyethylene glycol (PEG) mediated synthesis of pyrrolo-[2, 3-d] isoxazoles by using NaOCl reagent—a green chemistry approach. Green Chem Lett Rev 4:257–260. https://doi.org/10.1080/17518253.2011.560126

    Article  CAS  Google Scholar 

  23. Vafaeezadeh M, Hashemi MM (2015) Polyethylene glycol (PEG) as a green solvent for carbon–carbon bond formation reactions. J Mol Liq 207:73–79. https://doi.org/10.1016/j.molliq.2015.03.003

    Article  CAS  Google Scholar 

  24. Kauthale SS, Tekale SU, Jadhav KM, Pawar RP (2016) Ethylene glycol promoted catalyst-free pseudo three-component green synthesis of bis (coumarin) s and bis (3-methyl-1-phenyl-1H-pyrazol-5-ol) s. Mol Divers 20:763–770. https://doi.org/10.1007/s11030-016-9673-z

    Article  CAS  PubMed  Google Scholar 

  25. Cherkupally SR, Mekala R (2008) P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation. Chem Pharm Bull 56:1002–1004. https://doi.org/10.1248/cpb.56.1002

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7:64–82. https://doi.org/10.1039/B413546F

    Article  CAS  Google Scholar 

  27. Balasubramanian D, Chandani B (1983) Poly (ethylene glycol): a poor chemist’s crown. J Chem Educ 60:77. https://doi.org/10.1021/ed060p77

    Article  CAS  Google Scholar 

  28. Alessi ML, Norman AI, Knowlton SE, Ho DL, Greer SC (2005) Helical and coil conformations of poly (ethylene glycol) in isobutyric acid and water. Macromolecules 38:9333–9340. https://doi.org/10.1021/ma051339e

    Article  CAS  Google Scholar 

  29. Brahmachari G, Banerjee B (2013) Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain Chem Eng 2:411–422. https://doi.org/10.1021/sc400312n

    Article  CAS  Google Scholar 

  30. Khanna G, Saluja P, Khurana JM (2016) Catalyst free ethylene glycol promoted synthesis of spiro [indene-2, 2′-naphthalene]-4′-carbonitriles and spiro [naphthalene-2, 5′-pyrimidine]-4-carbonitriles via one-pot three-component reaction. Tetrahedron Lett 57:5852–5855. https://doi.org/10.1016/j.tetlet.2016.11.050

    Article  CAS  Google Scholar 

  31. Tiwari AR, Bhanage BM (2016) Polythene glycol (PEG) as a reusable solvent system for the synthesis of 1, 3, 5-triazines via aerobic oxidative tandem cyclization of benzylamines and N-substituted benzylamines with amidines under transition metal-free conditions. Green Chem 18:144–149. https://doi.org/10.1039/C5GC01884F

    Article  Google Scholar 

  32. Heravi MM, Mousavizadeh F, Ghobadi N, Tajbakhsh M (2014) A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, four-component reaction in water. Tetrahedron Lett 55:1226–1228. https://doi.org/10.1016/j.tetlet.2014.01.004

    Article  CAS  Google Scholar 

  33. Li X-T, Zhao A-D, Mo L-P, Zhang Z-H (2014) Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Adv 4:51580–51588. https://doi.org/10.1039/C4RA08689A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezvan Kardooni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ODT 2136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardooni, R., Kiasat, A.R. A green, catalyst-free synthesis of pyrazolopyranopyrimidines in polyethylene glycol as a biodegradable medium at ambient temperature. Mol Divers 23, 639–649 (2019). https://doi.org/10.1007/s11030-018-9898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9898-0

Keywords

Navigation