Skip to main content
Log in

An Experimental Study on the Fatigue Mechanism and Life Prediction of Glass Fiber Plates Under Random Vibrations

  • Published:
Mechanics of Composite Materials Aims and scope

The damage mechanism of 2D woven fiberglass panels under random vibration loadings was investigated by means of an experimental analysis and compared with the damage mechanism under constant-amplitude loadings. Based on experimental observations, it was found that the failure mode under vibration loadings was delamination, and predicting the vibration fatigue life using the traditional SN curve would result in significant errors. Therefore, a prediction method was proposed to accurately estimate the vibration fatigue life of a 2D woven fiberglass panel by modifying the conventional SN curve. An experimental verification showed that this method has a high level of prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. R. Talreja, “Damage analysis for structural integrity and durability of composite materials,” Fatigue and Fracture of Eng. Mater. and Struct., 29, No. 7, 481-506 (2006).

  2. R. De Finis, D. Palumbo, and U. Galietti, “Evaluation of damage in composites by using thermoelastic stress analysis: A promising technique to assess the stiffness degradation,” Fatigue and Fracture of Eng. Mater. and Struct., 43, No. 9, 2085-2100 (2020).

  3. A. Wan, J. Xiong, and Y. Xu, “Fatigue life prediction of woven composite laminates with initial delamination,” Fatigue and Fracture of Eng. Mater. and Struct., 43, No. 9, 2130-2146 (2020).

  4. S. Zhou, Y. Sun, and L. Guo, “Random fatigue life prediction of carbon fibre-reinforced composite laminate based on hybrid time-frequency domain method,” Adv. Compos. Mater., 26, No. 2, 181-195 (2016).

    Article  Google Scholar 

  5. D. Y. Gao, W. X. Yao, W. D. Wen, and J. Huang, “Equivalent spectral method to estimate the fatigue life of composite laminates under random vibration loadings,” Mech. Compos. Mater., 57, No. 1, 101-114 (2021).

    Article  CAS  Google Scholar 

  6. Z. Wu, Y. Zhao, J. Liang, M. Fu, and G. Fang, “A frequency domain approach in residual stiffness estimation of composite thin-wall structures under random fatigue loadings,” Int. J. Fatigue, 124, 571-580 (2019).

    Article  Google Scholar 

  7. Z. Wu, Z. Zhang, J. Wu, J. Liang, J. Ge, X. Liu, and G. Fang, “A new time-frequency domain simulation method for damage accumulation and life prediction of composite thin-wall structures under random cyclic loadings,” Compos. Struct., 281, 114999 (2022).

    Article  Google Scholar 

  8. X. Chen, Y. Sun, Z. Wu, L. Yao, Y. Zhang, S. Zhou, and Y. Liu, “An investigation on residual strength and failure probability prediction for plain weave composite under random fatigue loading,” Int. J. Fatigue, 120, 267-282 (2019).

    Article  CAS  Google Scholar 

  9. Y. Sun, Y. Zhang, C. Yang, Y. Liu, X. Chen, L. Yao, and W. Gao, “Prediction on fatigue properties of the plain weave composite under broadband random loading,” Fatigue and Fracture of Eng. Mater. and Struct., 44, No. 6, 1515-1532 (2021).

  10. M. M. Shokrieh and F. Taheri-Behrooz, “Progressive fatigue damage modeling of cross-ply laminates, I: Modeling strategy,” J. Compos. Mater., 44, No. 10, 1217-1231 (2009).

  11. P. Shabani, F. Taheri-Behrooz, S. Maleki, and M. Hasheminasab, “Life prediction of a notched composite ring using progressive fatigue damage models,” Compos., Part B, 165, 754-763 (2019).

    Article  CAS  Google Scholar 

  12. A. Varvani-Farahani and A. Shirazi, “A fatigue damage model for (0/90) FRP composites based on stiffness degradation of 0° and 90° composite plies,” J. Reinf. Plastics and Compos., 26, No. 13, 1319-1336 (2007).

    Article  CAS  Google Scholar 

  13. P. Li, W. Yao, F. Chen, and J. Zong, “Residual stiffness characterization of FRP laminates under random block spectrum,” Polymer Testing, 95, 107101 (2021).

    Article  CAS  Google Scholar 

  14. K. L. Reifsnider and A. Talug, “Analysis of fatigue damage in composite laminates,” Int. J. Fatigue, 2, No. 1, 3-11 (1980).

    Article  Google Scholar 

  15. T. Wu, W. Yao, C. Xu, and P. Li, “A natural frequency degradation model for very high cycle fatigue of woven fiber reinforced composite,” Int. J. Fatigue, 134, 105398 (2020).

    Article  Google Scholar 

  16. S. Mandegarian and F. Taheri-Behrooz, “A general energy based fatigue failure criterion for the carbon epoxy composites,” Compos. Struct., 235, 11804 (2020).

    Article  Google Scholar 

  17. P. Shabani, F. Taheri-Behrooz, S. S. Samareh-Mousavi, and M. M. Shokrieh, “Very high cycle and gigacycle fatigue of fiber-reinforced composites: A review on experimental approaches and fatigue damage mechanisms,” Progress in Mater. Sci., 118, 100762 (2021).

    Article  Google Scholar 

  18. Y. Wang, Y. Gong, Q. Zhang, Y. He, Z. Liu, and N. Hu, “Fatigue behavior of 2.5D woven composites based on the first-order bending vibration tests,” Compos. Struct., 284, 115218 (2022).

    Article  CAS  Google Scholar 

  19. S. D. Wu, D. G. Shang, L. X. Zuo, L. F. Qu, S. G. Wang, G. Hou, and G. C. Hao, “Notch fatigue behavior of needled C/SiC composite under random vibration loading,” Ceramics Int., 48, No. 6, 8349-8358 (2022).

    Article  CAS  Google Scholar 

  20. E. G. Koricho, G. Belingardi, and A. T. Beyene, “Bending fatigue behavior of twill fabric E-glass/epoxy composite,” Compos. Struct., 111, 169-178 (2014).

    Article  Google Scholar 

  21. R. Sakin, I. Ay, and R. Yaman, “An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials,” Mater. Design, 29, No. 1, 212-217 (2008).

    Article  CAS  Google Scholar 

  22. Z. Fan, Y. Jiang, S. Zhang, and X. Chen, “Experimental research on vibration fatigue of CFRP and its influence factors based on vibration testing,” Shock and Vibration, 2017, 1-18 (2017).

    Google Scholar 

  23. M. R. Hosseini, F. Taheri-Behrooz, and M. Salamat-Talab, “Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface,” Polymer Testing, 78, 105943 (2019).

    Article  CAS  Google Scholar 

  24. D. Xu, P. F. Liu, and Z. P. Chen, “A deep learning method for damage prognostics of fiber-reinforced composite laminates using acoustic emission,” Eng. Fracture Mech., 259, 108136 (2022).

    Article  Google Scholar 

  25. M. Ma, W. Yao, W. Jiang, W. Jin, Y. Chen, P. Li, and J. Huang, “Fatigue of composite honeycomb sandwich panels under random vibration load,” Compos. Struct., 286, 115296 (2022).

    Article  Google Scholar 

  26. Z. Wu, G. Fang, M. Fu, X. Chen, J. Liang, and D. Lv, “Random fatigue damage accumulation analysis of composite thin-wall structures based on residual stiffness method,” Compos. Struct., 211, 546-556 (2019).

    Article  Google Scholar 

  27. S. S. Samareh-Mousavi, S. Mandegarian, and F. Taheri-Behrooz, “A nonlinear FE analysis to model progressive fatigue damage of cross-ply laminates under pin-loaded conditions,” Int. J. Fatigue, 119, 290-301 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xie.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Xie, X. & Yao, W. An Experimental Study on the Fatigue Mechanism and Life Prediction of Glass Fiber Plates Under Random Vibrations. Mech Compos Mater 60, 375–384 (2024). https://doi.org/10.1007/s11029-024-10193-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-024-10193-3

Keywords

Navigation