Skip to main content
Log in

Equivalent Spectral Method to Estimate the Fatigue Life of Composite Laminates Under Random Vibration Loadings

  • Published:
Mechanics of Composite Materials Aims and scope

The power spectral density (PSD) of an equivalent stress is proposed to analyze the fatigue life of composite laminates under random vibration loadings using the Tsai–Hill criterion. The vibration fatigue life can be estimated based on the rainflow amplitude probability density function p(S) of the equivalent stress, which is obtained from this PSD, combined with the S-N curve of the materials. The fatigue life analysis of a random vibration fatigue experiment of composite laminates was carried out, and the calculation results were in accordance with experimental data, which indicates that the fatigue life analysis model proposed gives a satisfactory prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.

Similar content being viewed by others

References

  1. N. L. Post, S. W. Case, and J. J. Lesko, “Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading,” Int. J. Fatigue, 30, No. 12, 2064-2086 (2008).

    Article  CAS  Google Scholar 

  2. A. Vassilopoulos, Fatigue Life Prediction of Composites and Composite Structures, Woodhead Publishing, Cambridge (2010).

    Book  Google Scholar 

  3. T. P. Philippidis and A. P. Vassilopoulos, “Complex stress state effect on fatigue life of GRP laminates: part I, experimental,” Int. J. Fatigue, 24, No. 8, 813-823 (2002).

    Article  Google Scholar 

  4. T. P. Philippidis and A. P. Vassilopoulos, “Complex stress state effect on fatigue life of GRP laminates: Part II, Theoretical formulation,” Int. J. Fatigue, 24, No. 8, 825-830 (2002).

    Article  Google Scholar 

  5. M. Quaresimin, L. Susmel, and R. Talreja, “Fatigue behaviour and life assessment of composite laminates under multiaxial loadings,” Int. J. Fatigue, 32, No. 1, 2-16 (2010).

    Article  CAS  Google Scholar 

  6. T. P. Philippidis and A. P. Vassilopoulos, “Fatigue strength prediction under multiaxial stress,” J. Compos. Mater., 33, No. 17, 1578-1599 (1999).

    Article  CAS  Google Scholar 

  7. M. Gude, W. Hufenbach, I. Koch, and R. Protz, “Fatigue failure criteria and degradation rules for composites under multiaxial loadings,” Mech. Compos. Mater., 42, No. 5, 443-450 (2006).

    Article  CAS  Google Scholar 

  8. M. Kawai and T. Teranuma, “A multiaxial fatigue failure criterion based on the principal constant life diagrams for unidirectional carbon/epoxy laminates,” Composites: Part A. Appl. Sci. Manufact., 43, No. 8, 1252-1266 (2012).

    Article  CAS  Google Scholar 

  9. B. G. Vinayak, K. Jayaprakash, and N. K. Naik, “Fatigue behavior of laminated composites with a circular hole under in-plane uniaxial random loading,” Mater. Design, 40, 245-256 (2012).

    Article  Google Scholar 

  10. S. C. Tan, “Effective stress fracture models for unnotched and notched multidirectional laminate,” J. Compos. Mater., 22, No. 4, 322-340 (1988).

    Article  Google Scholar 

  11. S. Zhou, Y. Sun, and L. Guo, “Random fatigue life prediction of carbon fibre-reinforced composite laminate based on hybrid time-frequency domain method,” Adv. Compos. Mater., 26, No. 2, 1-15 (2017).

    Article  Google Scholar 

  12. M. M. Shokrieh and L. B. Lessard, “Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—I. Modelling,” Int. J. Fatigue, 19, No. 3, 201-207 (1997).

    Article  CAS  Google Scholar 

  13. M. M. Shokrieh and L. B. Lessard, “Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—II. Experimental evaluation,” Int. J. Fatigue, 19, No. 3, 209-217 (1997).

    Article  CAS  Google Scholar 

  14. M. Quaresimin and L. Susmel, “Multiaxial fatigue behaviour of composite laminates,” Key Eng. Mater., 221-222, 71-80 (2002).

    Article  CAS  Google Scholar 

  15. N. H. Yang, H. Nayeb-Hashemi, and A. Vaziri, “Multi-axial failure models for fiber-reinforced composites,” Journal of ASTM International, 4, No. 2, 1-13 (2007).

    Google Scholar 

  16. Y. M. Liu and S. Mahadevan, “A unified multiaxial fatigue damage model for isotropic and anisotropic materials,” Int. J. Fatigue, 29, No. 2, 347-359 (2007).

    Article  CAS  Google Scholar 

  17. A. M. El-Assal and U. A. Khashaba, “Fatigue analysis of unidirectional GFRP composites under combined bending and torsional loads,” Compos. Struct., 79, No. 4, 599-605 (2007).

    Article  Google Scholar 

  18. D. T. Qi and G. X. Cheng, “Failure analysis of fiber-reinforced composites under multiaxial cyclic stress,” Polym. Composite, 29, No. 8, 922-931 (2008).

    Article  CAS  Google Scholar 

  19. N. E. Bedewi and D. N. Kung, “Effect of fatigue loading on the modal properties of composite structures and its utilization for prediction of residual life,” Compos. Struct., 37, No. 3-4, 357-371 (1997).

    Article  Google Scholar 

  20. P. N. B. Reis, J. A. M. Ferreira, J. D. M. Costa, and M. O. W. Richardson, “Fatigue life evaluation for carbon/epoxy laminate composites under constant and variable block loading,” Compos. Sci. Technol., 69, No. 2, 154-160 (2009).

    Article  CAS  Google Scholar 

  21. Z. W. Wu, J. Liang, M. Q. Fu, G. D. Fang, and Z. G. Zhou, “Study of random fatigue behavior of C/SiC composite thin-wall plates,” Int. J. Fatigue, 116, 553-561 (2018).

    Article  CAS  Google Scholar 

  22. V. A. Passipoularidis, T. P. Philippidis, and P. Brondsted, “Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading,” Int. J. Fatigue, 32, No. 2, 132-144 (2011).

    Article  Google Scholar 

  23. Y. D. Zhou, X. C. Hang, S. Q. Wu, Q. G. Fei, and T. Natasa, “Frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites,” Acta Mech. Solida Sin., 30, No. 2, 165-173 (2017).

    Article  Google Scholar 

  24. Z. W. Wu, Y. Zhao, J. Liang, M. Q. Fu, and G. D. Fang, “A frequency domain approach in residual stiffness estimation of composite thin-wall structures under random fatigue loadings,” Int. J. Fatigue, 124, 571-580 (2019).

    Article  Google Scholar 

  25. J. R. Schaff and B. D. Davidson, “Life prediction methodology for composite structures. Part I—Constant amplitude and two-stress level fatigue,” J. Compos. Mater., 31, No. 2, 128-157 (1997).

    Article  CAS  Google Scholar 

  26. J. R. Schaff and B. D. Davidson, “Life prediction methodology for composite structures. Part II—Spectrum fatigue,” J. Compos. Mater., 31, No. 2, 158-181 (1997).

    Article  CAS  Google Scholar 

  27. X. J. Chen, Y. Sun, Z. W. Wu, L. J. Yao, Y. L. Zhang, S. Zhou, and Y. Z. Liu, “An investigation on residual strength and failure probability prediction for plain weave composite under random fatigue loading,” Int. J. Fatigue, 120, 267-282 (2019).

    Article  CAS  Google Scholar 

  28. Z. W. Fan, Y. Jiang, S. F. Zhang, and X. Chen. “Experimental research on vibration fatigue of cfrp and its influence factors based on vibration testing”, Shock and Vibration, Article ID 1241623(2017).

  29. D. Benasciutti, F. Sherratt, and A. Cristofori, “Recent developments in frequency domain multi-axial fatigue analysis,” Int. J. Fatigue, 91, No. 2, 397-413 (2016).

    Article  Google Scholar 

  30. A. Carpinteri, A. Spagnoli, and S. Vantadori, “A review of multiaxial fatigue criteria for random variable amplitude loads,” Fatigue Fract. Eng. M., 40, No. 7, 1007-1036 (2017).

    Article  Google Scholar 

  31. R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, No. 4, 213-222 (1965).

    Article  Google Scholar 

  32. X. Pitoiset and A. Preumont, “Spectral methods for multiaxial random fatigue analysis of metallic structures,” Int. J. Fatigue, 22, No. 7, 541-550 (2000).

    Article  Google Scholar 

  33. D. Y. Gao, W. X. Yao, and T. Wu, “A damage model based on the critical plane to estimate fatigue life under multi-axial random loading,” Int. J. Fatigue, 129, 104729 (2019).

    Article  Google Scholar 

  34. A. K. Kaw, Mechanics of Composite Materials (2nd edition): Mechanical and Aerospace Engineering Series, CRC Press: Boca Raton, FL, USA (2005).

    Book  Google Scholar 

  35. T. Dirlik, Application of Computers in Fatigue Analysis, University of Warwick (1985).

  36. W. X. Yao, Fatigue Life Estimation of Structures [In Chinese], Science Press, Beijing (2018).

    Google Scholar 

  37. P. R. Cunningham, R. S. Langley, and R. G. White, “Dynamic response of doubly curved honeycomb sandwich panels to random acoustic excitation. Part 2: Theoretical study,” J. Sound Vib., 264, No. 3, 605-637 (2003).

    Article  Google Scholar 

  38. C. Kyriazoglou, B. H. L. Page, and F. J. Guild, “Vibration damping for crack detection in composite laminates,” Composites: Part A. Appl. Sci. Manufact., 35, No. 7-8, 945-953 (2004).

    Article  Google Scholar 

  39. M. Aykan and M. Çelik, “Vibration fatigue analysis and multi-axial effect in testing of aerospace structures,” Mech. Syst. Signal Pr., 23, No. 3, 897-907 (2009).

    Article  Google Scholar 

  40. S. H. Han, D. G. An, S. J. Kwak, and K. W. Kang, “Vibration fatigue analysis for multi-point spot-welded joints based on frequency response changes due to fatigue damage accumulation,” Int. J. Fatigue, 48, 170-177 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Gao.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 1, pp. 139-160, January-February, 2021.

Appendix

Appendix

A. Power Spectral Density (PSD) and spectral moments

For a stationary ergodic random Gaussian process X (t) with a zero mean, its stochastic properties can be described by its autocorrelation function RX (τ) in the time domain, which can be calculated by the equation:

$$ {R}_X\left(\tau \right)=E\left[X(t)X\left(t+\tau \right)\right]. $$
(A.1)

It can also be described by the two-side power spectral density SX (ω) in the frequency domain, which forms a Fourier transform pair together with RX (τ):

$$ {\displaystyle \begin{array}{c}{S}_X\left(\omega \right)={\int}_{-\infty}^{+\infty }{R}_X\left(\tau \right){e}^{- j\omega \tau} d\tau, \\ {}{R}_X\left(\tau \right)=\frac{1}{2\pi }{\int}_{-\infty}^{+\infty }{S}_X\left(\omega \right){e}^{j\omega \tau} d\omega .\end{array}} $$
(A.2)

Since the negative frequency components in SX (ω) has little sense in engineering, the one-side power spectral density GX (ω) can be defined as

$$ {G}_X\left(\omega \right)=\Big\{{\displaystyle \begin{array}{c}2{S}_X\left(\omega \right),\omega \ge 0,\\ {}\kern1.24em 0\kern2em \omega <0.\end{array}} $$
(A.3)

Then, the spectral moments can be defined as

$$ {m}_i={\int}_0^{\infty }{\omega}^i{G}_X\left(\omega \right) d\omega, $$
(A.4)

where usually i = 0, 2, 4, … .

In this method, the number ν + of cycles in a unit time is described by the expected rate of zero-crossing with a positive slope:

$$ {\nu}^{+}=\frac{1}{2\pi}\sqrt{\frac{m_2}{m_0}}. $$
(A.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D.Y., Yao, W.X., Wen, W.D. et al. Equivalent Spectral Method to Estimate the Fatigue Life of Composite Laminates Under Random Vibration Loadings. Mech Compos Mater 57, 101–114 (2021). https://doi.org/10.1007/s11029-021-09937-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09937-2

Keywords

Navigation