Skip to main content
Log in

A Numerical Model for the Effective Damping Properties of Unidirectional Fiber-Reinforced Composites

  • Published:
Mechanics of Composite Materials Aims and scope

The effective damping characteristics of a polymer-based unidirectional fiber-reinforced composite are explored. A continuum micromechanical formulation is used to determine the effective damping parameters of a fiber-reinforced composite by the strain energy method. The damping properties include the loss factors corresponding to extensional, shear and coupled shear-extensional strains of the composite. First, the effective parameters of a homogenized composite are expressed employing phase-volume-averaged strain concentration matrices. These matrices are numerically evaluated by applying homogeneous displacement boundary conditions to the finite element formulation of the representative volume element (RVE) of composite. The accuracy of the present micromechanics formulation of RVE is established by comparing the loss factors calculated using the present model with those available in the published literature. The results obtained are also compared with existing experimental data. The damping properties calculated by the present model agree well with their experimental values. The effect of various cross-sectional shapes of fibers in the composite on the normal and shear loss factors calculated is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. A. K. Kaw, Mechanics of Composite Materials, CRC Press, Taylor & Francis Group (2006).

    Google Scholar 

  2. Z. V. I. Hashin, “Complex moduli of viscoelastic composites—I, General theory and application to particulate composites,” J. Solids Struct., 6, 539-552 (1970).

    Article  Google Scholar 

  3. C. T. Sun, J. K. Wu, and R. F. Gibson, “Prediction of material damping in randomly oriented short fiber polymer matrix composites,” J. Reinf. Plastics and Compos., 4, No. 3, 262-272 (1985).

    Article  CAS  Google Scholar 

  4. C. T. Sun, J. K. Wu, and R. F. Gibson, “Internal material damping of polymer matrix composites under off-axis loading,” Computers & Struct., 20, No. l-3, 391-400 (1985).

  5. H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” British J. Appl. Physics, 72-79 (1952).

  6. C. Cruz, J. Diani, and G. Regnier, “Micromechanical modelling of the viscoelastic behaviour of an amorphous poly(ethylene)terephthalate (PET) reinforced by spherical glass beads,” Compos., 40, 695-701 (2009).

    Article  Google Scholar 

  7. S. J. Hwang and R. F. Gibson, “Prediction of fiber-matrix interphase effects on damping of composites using a micromechanical strain energy/finite element approach,” Compos. Eng., 3, 975-984 (1993).

    Article  Google Scholar 

  8. Wei Yin-Tao, Gui Liang-Jin, and Y. Ting-Qing, “Prediction of the 3-D effective damping matrix and energy dissipation of viscoelastic fiber composites,” Composite Structures, 54, 49-55 (2001).

  9. L. Balis Crema, A. Castellani, and U. Drago, “Damping characteristics of fabric and laminated Kevlar composites,” Compos., 20, No. 6, 593-596 (1989).

  10. S. K. Chaturvedi and G. Y. Tzeng, “Micromechanical modeling of material damping in discontinuous fiber three-phase polymer composites,” Compos. Eng., 1, No. 1, 49-60 (1991).

    Article  CAS  Google Scholar 

  11. M. Kaliske and H. Rothert, “Damping characterization of unidirectional fiber-reinforced polymer composites,” Compos. Eng., 5, 551-567 (1995).

    Article  Google Scholar 

  12. A. Gupta, S. Panda, and R. S. Reddy, “Improved damping in sandwich beams through the inclusion of dispersed graphite particles within the viscoelastic core,” Compos. Struct., 247, 112424 (2020).

    Article  Google Scholar 

  13. A. Kumar and S. Panda, “Design of a 1-3 viscoelastic composite layer for improved free/constrained layer passive damping treatment of structural vibration,” Compos., Part B, 96, 204-214 (2016).

    Article  CAS  Google Scholar 

  14. A. Kumar, S. Panda, V. Narsaria, and A. Kumar, “Augmented constrained layer damping in plates through the optimal design of a 0-3 viscoelastic composite layer,” J. Vibration and Control, 24, 5514-5524 (2018).

    Article  Google Scholar 

  15. F. Schröter, H. Ismar, and F. Streicher, “Numerical determination of damping in metal matrix composites,” Mech. Compos. Mater., 37, No. 1, 43-46 (2001).

    Article  Google Scholar 

  16. I. C. Finegan and R. F. Gibson, “Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers,” Compos. Sci. and Technol., 60, 1077-1084 (2000).

    Article  CAS  Google Scholar 

  17. R. Chandra, S. P. Singh, and K. Gupta, “Micromechanical damping models for fiber-reinforced composites: a comparative study,” Compos., Part A, 33, 787-796 (2002).

    Article  Google Scholar 

  18. R. Chandra, S. P. Singh, and K. Gupta, “A study of damping in fiber-reinforced composites,” J. Sound and Vibration, 262, 475-496 (2003).

    Article  Google Scholar 

  19. S. P. Panda and S. Panda, “Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite,” Int. J. Mech. and Mater. in Design, 11, 41-57 (2014).

    Article  Google Scholar 

  20. J.-M. Berthelot and Y. Sefrani, “Longitudinal and transverse damping of unidirectional fiber composites,” Compos. Struct., 79, 423-431 (2007).

    Article  Google Scholar 

  21. G. C. Wright, “The dynamic properties of glass and carbon fiber reinforced plastic beams,” J. Sound and vibration, 21, 205-212 (1972).

    Article  Google Scholar 

  22. C. Doan, J. F. Geeard, P. Hamelin, and M. Xie, “Prediction of viscoelastic properties of glass/ether-amide block copolymer composite materials,” Compos. Sci. and Technol., 34, 337-351(1989).

    Article  CAS  Google Scholar 

  23. M. Ben Ameur, A. El Mahi, J. L. Rebiere, M. Abdennadher, and M. Haddar, “Damping analysis of unidirectional carbon/flax fiber hybrid composites,” Int. J. Appl. Mech., 10. No. 5, 1850050 (2018).

  24. E. K. Billups and M. Cavalli, “2D damping predictions of fiber composite plates: Layup effects,” Compos. Sci. and Technol., 68, 727-733 (2008).

    Article  CAS  Google Scholar 

  25. A. Trivisco, B. V. Genechten, D. Mundo, and M Tournor, “Damping in composite materials: Properties and models,” Compos., Part B, 78, 144-152 (2015).

    Article  Google Scholar 

  26. A Kumar, S Panda, and D Chakraborty, “Design and analysis of a smart graded fiber-reinforced composite laminated plate,” Compos. Struct., 124, 176-195 (2015).

    Article  Google Scholar 

  27. H. Li, Y. Niu, C. Mu, and B. Wen, “Identification of loss factor of fiber-reinforced composite based on complex modulus method,” Shock and Vibration, 2017, 6395739, (2017).

    Article  Google Scholar 

  28. S. Wang, S. Liang, and Q. Li, “Structural optimization to maximize loss factor of embedded co-cured damping composite,” Adv. in Mech. Eng., 11, 1-11, (2019).

    Article  Google Scholar 

  29. G. Fairlie and J. Njuguna, “Damping properties of flax/carbon hybrid epoxy/fibre-reinforced composites for automotive semi-structural applications,” Fibers, 8, 1-15 (2020).

    Article  Google Scholar 

  30. R. D. Adams, M. A. Fox, R. J. L. Flood, R. J. Friend, and R. L. Hewitt, “The dynamic properties of unidirectional carbon and glass fiber reinforced plastic in torsion and flexure,” J. Compos. Mater., 3, 594-603 (1969).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Rajkiya Engineering College Azamgarh UP, India for providing a computing facility in the MATLAB software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sarangi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V.N., Sarangi, S.K. A Numerical Model for the Effective Damping Properties of Unidirectional Fiber-Reinforced Composites. Mech Compos Mater 59, 1031–1044 (2023). https://doi.org/10.1007/s11029-023-10150-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10150-6

Keywords

Navigation