Skip to main content
Log in

Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite is presented. The identical short piezoelectric fibers in the composite lamina are coaxial, equally spaced and aligned in the plane of lamina. A continuum micromechanics approach is utilized for predicting the effective electro-elastic material coefficients through the evaluation of Hill’s volume average electro-elastic coupled field concentration matrices. An electro-elastic finite element model of unit cell and the corresponding appropriate electro-elastic boundary conditions are presented for numerical evaluation of concentration matrices. The finite element based micromechanics model and the imposed boundary conditions are verified through the evaluation of effective coefficients of an existing unidirectional continuous piezoelectric fiber reinforced composite. The numerical illustrations reveal an improved effective piezoelectric coefficient over that of the fiber counterpart. It is found that the increase in the length ratio between a fiber and the corresponding unit cell not only causes improved piezoelectric coefficients but also makes the cross sectional area ratio (A r ) between the same components as an important parameter for material coefficients. The optimal length and the optimal cross sectional A r for improved effective piezoelectric coefficients at a specified fiber volume fraction are presented. The effect of fiber aspect ratio on the effective piezoelectric coefficients is also presented that reveals an upper limit of increasing fiber aspect ratio in order to achieve maximum possible improvement in the magnitude of an effective coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aboudi, J.: Micromechanical prediction of the effective coefficients of thermo-piezoelectric multiphase composites. J. Intell. Mater. Syst. Struct. 9(9), 713–722 (1998)

    Article  Google Scholar 

  • Arockiarajan, A., Sakthivel, M.: Thermo-electro-mechanical response of 1–3–2 piezoelectric composites: effect of fiber orientations. Acta Mech. 223(7), 1353–1369 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Batra, R.C., Liang, X.Q., Yang, J.S.: The vibration of a simply supported rectangular elastic plate due to piezoelectric actuators. Int. J. Solids Struct. 33(11), 1597–1618 (1996)

    Article  MATH  Google Scholar 

  • Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126(2), 327–343 (1988)

    Article  Google Scholar 

  • Bent, A.A., Hagood, N.W.: Piezoelectric fiber composites with interdigitated electrodes. J. Intell. Mater. Syst. Struct. 8(11), 903–919 (1997)

    Article  Google Scholar 

  • Chakaraborty, D., Kumar, A.: Effective properties of thermo-electro-mechanically coupled piezoelectric fiber reinforced composites. Mater. Des. 30(4), 1216–1222 (2009)

    Article  Google Scholar 

  • Chandrasekhara, K., Tenneti, R.: Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators. Smart Mater. Struct. 4, 281–290 (1995)

    Article  Google Scholar 

  • Chang, F.-K., Kielers, C., Ha, S.K.: Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators. AIAA J. 30(3), 772–780 (1992)

    Article  MATH  Google Scholar 

  • Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and applications of finite element analysis. Wiley, New York (2001)

    Google Scholar 

  • Crawley, E.F., Lazarus, K.B.: Induced strain actuation of isotropic and anisotropic plates. AIAA J. 29(6), 944–951 (1991)

    Article  Google Scholar 

  • Crawley, E.F., Luis, J.D.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Article  Google Scholar 

  • Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastric moduli of piezoelectric composites. Int. J. Solids Struct. 30(2), 161–175 (1993)

    Article  MATH  Google Scholar 

  • Hill, R.: Elastic properties of reinforced solid: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)

    Article  MATH  Google Scholar 

  • Huang, J.H., Kuo, W.-S.: Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44(12), 4889–4898 (1996)

    Article  Google Scholar 

  • Hwang, W.-S., Park, H.C., Hwang, W.: Vibration control of a laminated plate with piezoelectric sensor/actuator: finite element formulation and modal analysis. J. Intell. Mater. Syst. Struct. 4(3), 317–329 (1993)

    Article  Google Scholar 

  • Inman, D.J., Friswell, M.I., Reitz, R.W.: Active damping of thermally induced vibrations. J. Intell. Mater. Syst. Struct. 8(8), 678–685 (1997)

    Article  Google Scholar 

  • James, F.T., Sedat, A., Newnham, R.E.: Piezolectric sensors and sensor materials. J. Electroceram. 2(4), 257–272 (1998)

    Article  Google Scholar 

  • Kalamkarov, A.L., Savi, M.A.: Micromechanical modeling and effective properties of the smart grid reinforced composites. J. Brazilian Soc. Mech. Sci. Eng. XXXIV, 343–351 (2012)

  • Mallik, N., Ray, M.C.: Effective coefficients of piezoelectric fiber reinforced composites. AIAA J. 41(4), 704–710 (2003)

    Article  Google Scholar 

  • Miller, S.E., Hubbard, J.E.: Observability of a Bernoulli–Euler beam using PVF2 as a distributed sensor. MIT Draper Laboratory Report (1987)

  • Ray, M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mech. Mater. Des. 3(4), 361–371 (2006)

    Article  Google Scholar 

  • Ray, M.C.: Optimal control of laminated plate with piezoelectric sensor and actuator layers. AIAA J. 36(12), 2204–2208 (1998)

    Article  Google Scholar 

  • Ray, M.C., Mallik, N.: Finite element analysis of smart structures containing piezoelectric fiber-reinforced composite actuator. AIAA J. 42(7), 1398–1405 (2004)

    Article  Google Scholar 

  • Ray, M.C., Mallik, N.: Performance of smart damping treatment using piezoelectric fiber-reinforced composites. AIAA J. 43(1), 184–193 (2005)

    Article  Google Scholar 

  • Ray, M.C., Sachade, H.M.: Finite element analysis of smart functionally graded plates. Int. J. Solids Struct. 43(18–19), 5468–5484 (2006)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21(7), 568–593 (1999)

    Article  Google Scholar 

  • Shen, H.-S.: Postbuckling of shear deformable laminated plates with piezoelectric actuators under complex loading conditions. Int. J. Solids Struct. 38(44–45), 7703–7721 (2001)

    Article  MATH  Google Scholar 

  • Shu, D., Della, C.N.: The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix. Acta Mater. 56(4), 754–761 (2008)

    Article  Google Scholar 

  • Smith, W.A., Auld, B.A.: Modeling of 1-3 composite piezoelectrics: thickness mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(1), 40–47 (1991)

    Article  Google Scholar 

  • Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  • Vel, S.S., Batra, R.C.: Cylindrical bending of laminated plates with distributed and segmented piezoelectric actuators/sensors. AIAA J. 38(5), 857–867 (2000)

    Article  Google Scholar 

  • Venkatesh, T.A., Kar-Gupta, R.: Electromechanical response of (2–2) layered piezoelectric composites. Smart Mater. Struct. 22, 02503514–02530351 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S.P., Panda, S. Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int J Mech Mater Des 11, 41–57 (2015). https://doi.org/10.1007/s10999-014-9256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9256-z

Keywords

Navigation