Skip to main content
Log in

Influence of the Method of Obtaining Filled Polymer Nanocomposites of Polylactide Reduced Graphene Oxide on Their Properties and Structure

  • Published:
Mechanics of Composite Materials Aims and scope

Filled compositions of polylactide (PLA) with a reduced graphene oxide (RGO) at various components ratios were obtained by two independent methods: the solid-phase mixing of components under the action of shear strains and the liquid-phase synthesis in a chloroform solution with ultrasonic stirring. The influence of the structure of formed composites on the complex of their properties was studied. The method of scanning electron microscopy showed the formation of aggregates of RGO nanoparticles during the synthesis of compositions in the liquid phase, leading to a decrease in their strength and electrical characteristics. A comparative study of the thermophysical characteristics of polylactide in the compositions obtained by the solid- and liquid-phase methods was carried out, the corresponding temperatures and heats of thermal transitions were determined, and the crystallinity of the compositions was calculated. The sharp drop observed in the crystallinity of PLA in the compositions synthesized in the solid phase was caused by amorphization of the polymer under the action of shear strains and by a decrease in the segmental mobility of macromolecules under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. J. Jem, J. F. van der Pol, and S. de Vos Microbial Lactic Acid, Its Polymer Poly(lactic acid) and their industrial Applications, Plastics from Bacteria: Natural Functions and Applications / Ed. G. G.-Q. Chen — Berlin, Heidelberg: Springer, 323-346 (2010).

  2. D. A. Garlotta, “Literature review of poly(lactic acid),” J. Polym. Environ., 19, No. 2, 63-84 (2011).

    Article  Google Scholar 

  3. T. Ghaffar, M. Irshad, Z. Anwar, T. Aqil, Z. Zulifqar, A. Tarig, M. Kamran, N. Ehsan, and S. Mehmood Recent trends in lactic acid biotechnology: A brief review on production to purification,” J. Radiat. Res. Appl. Sci., 7, No. 2, 222-229 (2014).

    Article  CAS  Google Scholar 

  4. R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, “Synthesis of poly(lactic acid): A Review,” J. Macromol. Sci., Polym. Rev., 45, No. 4, 325-349 (2005).

    Article  Google Scholar 

  5. R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic acid technology,” Adv. Mater., 12, No. 23, 1841-1846 (2000).

    Article  CAS  Google Scholar 

  6. W. Gao, The Chemistry of Grapheme Oxide, Graphene Oxide. Cham: Springer Int. Publ., 61-95 (2015).

  7. Y. Fu, L. Liu, J. Zhang, and W. C. Hiscox, “Functionalized graphenes with polymer toughener as novel interface modifier for property-tailored polylactic acid/graphene nanocomposites,” Polym., 55, No. 24, 6381-6389 (2014).

    Article  CAS  Google Scholar 

  8. S. Rogovina, S. Lomakin, S. Usachev, and M. Gasymov, O. Kuznetsova, N. Shilkina, V. Shevchenko, A. Shapagin, E. Prut, and A.Berlin, “The study of properties and structure of polylactide-graphite nanoplates compositions,” Hindawi Polym. Crystal., Article ID 4367582, 9 p. (2022).

  9. B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi, D. Chapron, V. Toniazzo, and D. Ruch, “Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites,” Thermochim. Acta, 552, 106-113 (2013).

    Article  CAS  Google Scholar 

  10. Y. Gao, O.T. Picot, E. Bilotti, and T. Peijs, “Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites,” Europ. Polym. J., 86, 117-131 (2017).

    Article  CAS  Google Scholar 

  11. Y.-H. Lai, Y.-H. Chen, A. Pal, S.-H. Chou, S.-J. Chang, E.-W. Huan, Z.-H. Lin, and S.-Y. Chen, “Regulation of cell differentiation via synergistic self-powered stimulation and degradation behavior of a biodegradable composite piezoelectric scaffold for cartilage tissue,” Nano Energy. Part A, 90, 106545 (2021).

    Article  CAS  Google Scholar 

  12. D. Esperanza, I. Naroa, R. Sylvie, and L.-M. Senentxu, “Cytocompatible scaffolds of poly(L-lactide)/reduced graphene oxide for tissue engineering,” J. Biomat. Sci. Polym., 32, No. 11, 1406-1419 (2021).

    Article  Google Scholar 

  13. S. V. Usachev, S. M. Lomakin, E. V. Koverzanova, N. G. Shilkina, I. I. Levina, E. V. Prut, S. Z. Rogovina, and A. A. Berlin, “Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D,” Thermochim. Acta, 712, 179227 (2022).

    Article  CAS  Google Scholar 

  14. M. Moniruzzaman and K. I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules, 39, 5194-5205 (2006).

    Article  CAS  Google Scholar 

  15. H. B. Zhang, W. G. Zheng, Q. Yan, J. W. Wang, Z. H. Lu et al., “Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding,” Polymers, 51, 1191-1196 (2010).

    Article  CAS  Google Scholar 

  16. S. Z. Rogovina, K. V. Aleksanyan, A. A. Loginova, N. E. Ivanushkina, L. V. Vladimirov, E. V. Prut, and A. A. Berlin, “Influence of PEG on mechanical properties and biodegradation of composites based on PLA and starch,” Starch/Staerke., 70, (2018).https://doi.org/10.002/star.201700268

  17. S. Z. Rogovina, E. V. Prut, K. V. Aleksanyan, V. G. Krashininnikov, E. O. Perepelitsyna, D. P. Shaskin, N. E. Ivanushkina, and A. A. Berlin, “Production and investigation of structure and properties of polyethуlene-polylactide composites,” J. Appl. Polym. Sci., 136, No. 22, 47598. (2019); https:// doi.org/https://doi.org/10.1002/app.47598

  18. S. Z. Rogovina, L. A. Zhorina, A. K. Gatin, E. V. Prut, O. P. Kuznetsova, A. R. Yakhina, A. A. Olkhov, N. A. Samoylov, M. V. Grishin, A. L. Iordanskii, and A. A. Berlin, “Biodegradable polylactide-poly(3-hydroxybutyrate) compositions obtained via blending under shear deformations and electrospinning: characterization and environmental application,” Polymers, 12, 1088 (2020); doi:https://doi.org/10.3390/polym12051088

    Article  CAS  Google Scholar 

  19. A. A. Arbuzov, V. E. Muradyan, B. P. Tarasov, E. A. Sokolov, and S. D. Babenko, “Epoxy composites with thermally reduced graphite oxide and their properties,” Zh. Physical Chemistry, 90, No. 5, 663-667 (2016).

    Google Scholar 

  20. A. A. Arbuzov, V. E. Muradyan, and B. P. Tarasov, “Synthesis of graphene-like materials by reduction of graphite oxide,” Izv. RAS Ser. Chem., No. 9, 1962-1966 (2013).

  21. M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. sci. Eng. R. Rep., 28, 1-63 (2000).

    Article  Google Scholar 

  22. T. D. Fornes and D. R. Paul, “Modeling properties on nylon 6/clay nano-composites using composite theories,” Polym., 44, 4993-5013 (2003).

    Article  CAS  Google Scholar 

  23. L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, “Interfacial stress transfer in a graphene monolayer nanocomposite,” Adv. Mater., 22, 2694-2697 (2010).

    Article  CAS  Google Scholar 

  24. D. W. Schaefer and R. S. Justice, “How nano are nanocomposites,” Macromol., 40, 8501-8517 (2007).

    Article  CAS  Google Scholar 

  25. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240 (2010).

  26. H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., “Functionalized single graphene sheets derived from splitting graphite oxide,” J. Phys. Chem. B, 110, No. 17, 8535-8539 (2006).

    Article  CAS  Google Scholar 

  27. S. Z. Rogovina, Chemical modification of natural polysaccharides of cellulose, chitin and chitosan in the solid phase under the action of shear deformations, Dis. ... Dr. chem. Sciences. ISPM RAS. - M., 232 p. (2003).

  28. T. Batakliev, V. Georgiev, C. Kalupgian, P. A. R. Musoz, H. Ribeiro, G. J. M. Fechine, R. J. E. Andrade, E. Ivanov, and R. Kotsilkova, “Physico-chemical characterization of PLA-based composites holding carbon nanofillers,” Appl. Compos. Mat., 28, 1175-1192 (2021).

    Article  CAS  Google Scholar 

  29. V. Goodarzi, M. Fasihib, H. Garmabi, M. Ohshima., K. Taki, and M. R. Saeb, “Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams,” Mater. Today Comm., 25, 101447 (2020).

    Article  CAS  Google Scholar 

  30. Y. A. Balogun and R. C. Buchanan, “Enhanced percolative properties from solubility dispersion of filler phase in conducting polymer composites (CPCs),” Compos. Sci. Technol., 892-900 (2010).

  31. E. Fischer, H. Sterzel, and G. Wegner, “Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions,” Colloid Polym. Sci., 521, 980-990 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Rogovina.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 58, No. 6, pp. 1207-1224, November-December, 2022. Russian DOI: https://doi.org/10.22364/mkm.58.6.07.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogovina, S.Z., Gasymov, M.M., Lomakin, S.M. et al. Influence of the Method of Obtaining Filled Polymer Nanocomposites of Polylactide Reduced Graphene Oxide on Their Properties and Structure. Mech Compos Mater 58, 845–856 (2023). https://doi.org/10.1007/s11029-023-10073-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10073-2

Keywords

Navigation