Skip to main content
Log in

Molecular dynamics simulation of tension of polymer composites reinforced with graphene and graphene oxide

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study utilized molecular dynamics simulation to investigate the mechanical properties of polymer, graphene, graphene oxide, and their composites. Polypropylene, polyethylene, and polyvinyl alcohol reinforced with graphene and graphene oxide were modeled to investigate their mechanical properties. The simulation results revealed that adding graphene and graphene oxide significantly improved the tensile strength and Young’s modulus of the polymer matrices compared to the unfilled polymers. Moreover, a polymer reinforced by a single layer of graphene oxide demonstrated higher tensile strength than a composite containing multiple graphene oxide layers due to the formation of agglomerate, inadequate interface bonding and dispersion. Overall, the molecular dynamics models provided valuable insights into how the microstructure influences the mechanics of these nanocomposites, offering guidance for developing high-performance polymer materials through rational nanofiller design and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

All data regarding the simulation and modeling are available on request.

References

  1. Zhu, S., Qin, X., Zou, Z., Zhang, R., Jiang, Y.: Preparation and evaluation of surfactant-stabilized graphene sheets and piezoresistivity of GPs/cement composite. Carbon Lett. 30(1), 93–98 (2020)

    Article  Google Scholar 

  2. Kumar, A., Sharma, K., Dixit, A.R.: A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 54(8), 5992–6026 (2019)

    Article  Google Scholar 

  3. Fu, J., Zhang, M., Jin, L., Liu, L., Li, N., Shang, L., Li, M., Xiao, L., Ao, Y.: Enhancing interfacial properties of carbon fibers reinforced epoxy composites via Layer-by-Layer self-assembly GO/SiO2 multilayers films on carbon fibers surface. Appl. Surf. Sci. 470, 543–554 (2019)

    Article  Google Scholar 

  4. Lu, Y.B., Yang, Q.S., He, X.Q., Liew, K.M.: Modeling the interfacial behavior of carbon nanotube fiber/polyethylene composites by molecular dynamics approach. Comp. Mater. Sci. 114, 189–198 (2016)

    Article  Google Scholar 

  5. Liu, X., Yang, Q.-S., He, X.-Q., Liew, K.-M.: Self-densified microstructure and enhanced properties of carbon nanotube fiber by infiltrating polymer. Carbon 106, 188–194 (2016)

    Article  Google Scholar 

  6. Liu, X., Yang, Q.S., Liew, K.M., He, X.Q.: Superstretchability and stability of helical structures of carbon nanotube/polymer composite fibers: coarse-grained molecular dynamics modeling and simulation. Carbon 115, 220–228 (2017)

    Article  Google Scholar 

  7. Liang, A., Jiang, X., Hong, X., Jiang, Y., Shao, Z., Zhu, D.: Recent developments concerning the dispersion methods and mechanisms of graphene. Carbon 8(1), 33 (2018)

    Google Scholar 

  8. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  9. Weitz, R.T., Yacoby, A.: Nanomaterials: graphene rests easy. Nat. Nanotechnol. 5(10), 699–700 (2010)

    Article  Google Scholar 

  10. He, H., Klinowski, J., Forster, M., Lerf, A.: A new structural model for graphite oxide. Chem. Phys. Lett. 287(1), 53–56 (1998)

    Article  Google Scholar 

  11. Kai, M.F., Zhang, L.W., Liew, K.M.: Graphene and graphene oxide in calcium silicate hydrates: chemical reactions, mechanical behavior and interfacial sliding. Carbon 146, 181–193 (2019)

    Article  Google Scholar 

  12. Vijayan, D., Rajmohan, T.: Modeling and evolutionary computation on drilling of carbon fiber-reinforced polymer nanocomposite: an integrated approach using RSM based PSO. J. Braz. Soc. Mech. Sci. Eng. 41(10), 395 (2019)

    Article  Google Scholar 

  13. Cui, W., Bian, Y., Zeng, H., Zhang, X., Zhang, Y., Weng, X., Xin, S., Jin, Z.: Structural and tribological characteristics of ultra-low-wear polyethylene as artificial joint materials. J. Mech. Behav. Biomed. Mater. 104, 103629 (2020)

    Article  Google Scholar 

  14. Liu, T., Huang, K., Li, L., Gu, Z., Liu, X., Peng, X., Kuang, T.: High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol. 175, 100–110 (2019)

    Article  Google Scholar 

  15. Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J.M., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., Pérez, G., Jesdinszki, M., Lindner, M., Scheuerer, Z., Castelló, S., Schmid, M.: Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomater. (Basel, Switzer.) 7(4), 74 (2017)

    Article  Google Scholar 

  16. Gopanna, A., Rajan, K.P., Thomas, S.P., Chavali, M.: Polyethylene and polypropylene matrix composites for biomedical applications. In: Materials for Biomedical Engineering, pp. 175–216. Elsevier (2019). https://doi.org/10.1016/B978-0-12-816874-5.00006-2

    Chapter  Google Scholar 

  17. Kai, M.-F., Dai, J.-G.: Understanding geopolymer binder-aggregate interfacial characteristics at molecular level. Cement Concr. Res. 149, 106582 (2021)

    Article  Google Scholar 

  18. Kai, M.J., Wei-Ming, J., Dai, J.-G.: Atomistic insights into the debonding of epoxy-concrete interface with water presence. Eng. Fract. Mechan. 271, 108668 (2022)

    Article  Google Scholar 

  19. Cho, B.-G., Lee, J.-E., Hwang, S.-H., Han, J.H., Chae, H.G., Park, Y.-B.: Enhancement in mechanical properties of polyamide 66-carbon fiber composites containing graphene oxide-carbon nanotube hybrid nanofillers synthesized through in situ interfacial polymerization. Compos. A Appl. Sci. Manuf. 135, 105938 (2020)

    Article  Google Scholar 

  20. Wang, Y., Meng, Z.: Mechanical and viscoelastic properties of wrinkled graphene reinforced polymer nanocomposites–effect of interlayer sliding within graphene sheets. Carbon 177, 128–137 (2021)

    Article  Google Scholar 

  21. Wang, J., Song, F., Ding, Y., Shao, M.: The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites. Mater. Des. 195, 109073 (2020)

    Article  Google Scholar 

  22. Wang, H., Xie, G., Fang, M., Ying, Z., Tong, Y., Zeng, Y.: Mechanical reinforcement of graphene/poly(vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods. Compos. B Eng. 113, 278–284 (2017)

    Article  Google Scholar 

  23. Cheng-an, T., Hao, Z., Fang, W., Hui, Z., Xiaorong, Z., Jianfang, W.: Mechanical properties of graphene oxide/polyvinyl alcohol composite film. Polym. Polym. Compos. 25(1), 11–16 (2017)

    Google Scholar 

  24. Jun, Y.-S., Um, J.G., Jiang, G., Yu, A.J.E.P.L.: A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polym. Lett. 12, 885–897 (2018)

    Article  Google Scholar 

  25. Yoon, O.J., Jung, C.Y., Sohn, I.Y., Kim, H.J., Hong, B., Jhon, M.S., Lee, N.-E.: Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos. A Appl. Sci. Manuf. 42(12), 1978–1984 (2011)

    Article  Google Scholar 

  26. Ghodrati, H., Ghomashchi, R.: Effect of graphene dispersion and interfacial bonding on the mechanical properties of metal matrix composites: an overview. FlatChem 16, 100113 (2019)

    Article  Google Scholar 

  27. Jin, X., Wang, J., Dai, L., Wang, W., Wu, H.: Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube. Compos. Sci. Technol. 184, 107862 (2019)

    Article  Google Scholar 

  28. Li, Yunlong, Wang, Quan, Wang, Shijie: A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: molecular dynamics simulations. Compos. Part B Eng. 160, 348–361 (2019). https://doi.org/10.1016/j.compositesb.2018.12.026

    Article  Google Scholar 

  29. Harito, C., Bavykin, D.V., Yuliarto, B., Dipojono, H.K., Walsh, F.C.: Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11(11), 4653–4682 (2019)

    Article  Google Scholar 

  30. Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A.U.H.A., Mian, S.A., Ali, G.: An overview of the recent progress in the synthesis and applications of carbon nanotubes. Carbon 5(1), 3 (2019)

    Google Scholar 

  31. Badakhsh, A., Lee, Y.-M., Rhee, K.Y., Park, C.W., An, K.-H., Kim, B.-J.: Improvement of thermal, electrical and mechanical properties of composites using a synergistic network of length controlled-CNTs and graphene nanoplatelets. Compos. B Eng. 175, 107075 (2019)

    Article  Google Scholar 

  32. Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, K.H.: Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Mater. Sci. Eng. C Mater. Biol. Appl. 106, 110154 (2020)

    Article  Google Scholar 

  33. Cho, B.H., Chung, W., Nam, B.H.: Molecular dynamics simulation of calcium-silicate-hydrate for nano-engineered cement composites-a review. Nanomaterials (Basel) 10(11), 2158 (2020)

    Article  Google Scholar 

  34. Liu, J., Li, Q., Xu, S.: Reinforcing mechanism of graphene and graphene oxide sheets on cement-based materials. Nanomaterials 31(4), 04019014 (2019)

    Google Scholar 

  35. Qiu, B., Sun, T., Li, M., Chen, Y., Zhou, S., Liang, M., Zou, H.: High micromechanical interlocking graphene oxide/carboxymethyl cellulose composite architectures for enhancing the interface adhesion between carbon fiber and epoxy. Compos. A Appl. Sci. Manuf. 139, 106092 (2020)

    Article  Google Scholar 

  36. Kai, M.F., Zhang, L.W., Liew, K.M.: Carbon nanotube-geopolymer nanocomposites: a molecular dynamics study of the influence of interfacial chemical bonding upon the structural and mechanical properties. Carbon 161, 772–783 (2020)

    Article  Google Scholar 

  37. Kai, M.-F., Dong, F.S., Hou, S., Dai, J.-G.: Nanoscale insights into the interfacial characteristics between calcium silicate hydrate and silica. Appl. Surf. Sci. 616, 0169–4332 (2023)

    Article  Google Scholar 

  38. Zhang, L.W., Kai, M.F., Chen, X.H.: Si-doped graphene in geopolymer: Its interfacial chemical bonding, structure evolution and ultrastrong reinforcing ability. Cement Concr. Compos. 109, 103522 (2020)

    Article  Google Scholar 

  39. Padhi, A.K., Janežič, M., Zhang, K.Y.J.: Molecular dynamics simulations: principles, methods, and applications in protein conformational dynamics. In: Advances in Protein Molecular and Structural Biology Methods, pp. 439–454. Elsevier (2022). https://doi.org/10.1016/B978-0-323-90264-9.00026-X

    Chapter  Google Scholar 

  40. Wang, J.F., Yang, J.P., Tam, L.-H., Zhang, W.: Molecular dynamics-based multiscale nonlinear vibrations of PMMA/CNT composite plates. Mechan. Syst. Signal Process. 153, 107530 (2021)

    Article  Google Scholar 

  41. Gogoi, R., Sethi, S.K., Manik, G.: Surface functionalization and CNT coating induced improved interfacial interactions of carbon fiber with polypropylene matrix: a molecular dynamics study. Appl. Surface Sci. 539, 148162 (2021)

    Article  Google Scholar 

  42. Tam, L.-H., Jiang, J., Yu, Z., Orr, J., Wu, C.: Molecular dynamics investigation on the interfacial shear creep between carbon fiber and epoxy matrix. Appl. Surf. Sci. 537, 148013 (2021)

    Article  Google Scholar 

  43. Moller, M.A., Tildesley, D.J., Kim, K.S., Quirke, N.: Molecular dynamics simulation of a Langmuir-Blodgett film. J. Chem. Phys. 94(12), 8390–8401 (1991)

    Article  Google Scholar 

  44. Grindon, C., Harris, S., Evans, T., Novik, K., Coveney, P., Laughton, C.: Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS. Philos. Trans. A Math. Phys. Eng. Sci. 362(1820), 1373–1386 (2004)

    Article  MathSciNet  Google Scholar 

  45. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  Google Scholar 

  46. Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 66(8), 594–597 (2012)

    Article  Google Scholar 

  47. Pang, W., Ni, Z., Chen, G., Huang, G., Huang, H., Zhao, Y.: Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites. RSC Adv. 5(77), 63063–63072 (2015)

    Article  Google Scholar 

  48. Zhang, Q., Chen, D.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43, 2357 (2010)

    Article  Google Scholar 

  49. Liu, L., Zhang, J., Zhao, J., Liu, F.: Mechanical properties of graphene oxides. Nanoscale 4(19), 5910–5916 (2012)

    Article  Google Scholar 

  50. Muragan, M.D., Zakaria, Z., Hassan, A.: Mechanical and thermal properties of graphene oxide reinforced polypropylene/pineapple leaves fibre composites. PERINTIS eJournal 9(2), 11–20 (2019)

    Google Scholar 

Download references

Acknowledgements

This work described in this paper was supported by 111 Project of China (Grant No. B18062) and the Fundamental Research Funds for the Central Universities (Grant No. 2022CDJQY-009).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

KJM contributed to investigation, software, and methodology. Y-FW and KJM contributed equally to this work. JFA contributed to writing and editing. Y-GH contributed to conceptualization, methodology, writing-original draft, and writing-review and editing.

Corresponding author

Correspondence to Yan-Gao Hu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mofu, K.J., Wei, YF., Awol, J.F. et al. Molecular dynamics simulation of tension of polymer composites reinforced with graphene and graphene oxide. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03942-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03942-x

Navigation