Skip to main content
Log in

Simulation of Crumpling in Composite Materials via Computational Micromechanics

  • Published:
Mechanics of Composite Materials Aims and scope

A method for studying the crumpling of unidirectional composite material based on the computational micromechanics is proposed. A micromechanical model is used to study the elasticity and strength of a unidirectional composite material in crumpling under a fastener. The model simulates the test results on a semisample with a hole of diameter 6 mm. The effect of contact friction and fiber defects on the elastic modulus of crumpling is shown on a model that takes into account only the geometric nonlinearity. On a model with elastic-plastic properties of the matrix, the formation features of kink bands in fibers are shown and the sequence of damage initiation during crumpling is revealed. The relations obtained can be taken into account when creating a damage model of the homogenized material of a unidirectional composite layer and studying the crumpling on multidirectional lay-ups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. B. Montagne, F. Lachaud, E. Paroissien, and D. Martini, “Failure analysis of composite bolted joints by an experimental and a numerical approach,” ECCM 2018, 18th Europ. Conf. Compos. Mater., Athens, 24-28 June, 2020.

  2. V. Eremin, A. Bolshikh, V. Koroliskii, and K. Shelkov, “Methods for flexibility determination of bolted joints: Empirical formula review,” J. Phys. Conf. Ser., 1925, No. 1, 1-9 (2021).

    Article  Google Scholar 

  3. P. P. Camanho and F. L. Matthews Stress analysis and strength prediction of mechanically fastened joints in FRP: A review,” Composites: Part A, 28, No. 6, 529-547 (1997).

  4. E. J. Barbero, “Prediction of compression strength of unidirectional polymer matrix composites,” J. Compos. Mater., 32, No. 5, 483-502 (1998).

    Article  CAS  Google Scholar 

  5. B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. Phys. Solids, 41, No. 1, 183-211 (1993).

    Article  Google Scholar 

  6. B. Budiansky, N. A. Fleck, and J. C. Amazigo, “On kink-band propagation in fiber composites,” J. Mech. Phys. Solids, 46, No. 9, 1637-1653 (1998).

    Article  CAS  Google Scholar 

  7. C. Soutis, N. A. Fleck, and P. A. Smith, “Failure prediction technique for compression loaded carbon fibre-epoxy laminate with open holes,” J. Compos. Mater., 25, No. 11, 1476-1498 (1991).

    Article  Google Scholar 

  8. M. P. F. Sutcliffe and N. A. Fleck, “Microbuckle propagation in fibre composites,” Acta Materialia, 45, No. 3, 921-932 (1997).

    Article  CAS  Google Scholar 

  9. P. S. Wu and C. T. Sun, “Modeling bearing failure initiation in pin-contact of composite laminates,” Mech. Mater., 29, Nos. 3-4, 325-335 (1998).

    Article  Google Scholar 

  10. S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I — Experimental study and numerical modelling,” Compos. Sci. Technol., 69, Nos. 7-8, 948-955 (2009).

    Article  Google Scholar 

  11. S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part II — Analytical modelling,” Compos. Sci. Technol., 69, Nos. 7-8, 956-964 (2009).

    Article  Google Scholar 

  12. S. Y. Hsu, T. J. Vogler, and S. Kyriakides, “Compressive strength predictions for fiber composites,” J. Appl. Mech., Trans. ASME, 65, No. 1, 7-16 (1998).

    Article  Google Scholar 

  13. M. Herráez, A. C. Bergan, C. S. Lopes, and C. González, “Computational micromechanics model for the analysis of fiber kinking in unidirectional fiber-reinforced polymers,” Mech. Mater., 142, March, 1-25 (2020).

    Google Scholar 

  14. B. Daum, N. Feld, O. Allix, and R. Rolfes, “A review of computational modelling approaches to compressive failure in laminates,” Compos. Sci. Technol., 181, Sept., 1-37 (2019).

  15. ASTM Standard D 953-37 Bearing Strength of Plastics, 1-8 (2019).

  16. ASTM Standard D5961/D5961M-13 Bearing Response of Polymer Matrix Composite Laminates, 1-31, (2013).

  17. C. Sola, B. Castanié, L. Michel, F Lachaud., A. Delabie, and E. Mermoz, “On the role of kinking in the bearing failure of composite laminates,” Composite Structures, 141, May, 184-193 (2016).

  18. O. Falcó, B. Tijs, B. Romano, and C. S. Lopes, “A virtual test lab for unidirectional coupons,” ECCM 2018, 18th Europ. Conf. Compos. Mater., Athens, 24-28 June, 2020.composite

  19. S. Hosseini, S. Löhnert, P. Wriggers, and E. Baranger, “A Multiscale projection method for the analysis of fiber microbuckling in fiber reinforced composites,” Lecture Notes in Appl. Comput. Mech., 93, 167-184 (2020).

    Article  Google Scholar 

  20. M. Pogosyan, E. Nazarov, A. Bolshikh, V. Koroliskii, N. Turbin, and K. Shramko, “Aircraft composite structures integrated approach: A review,” J. Phys.: Conf. Ser., 1925, No. 1, 1-16 (2021).

    Google Scholar 

  21. C. González and J. Llorca, “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling,” Compos. Sci. Technol., 67, No. 13, 2795-2806 (2007).

    Article  Google Scholar 

  22. L. P. Canal, G. Pappas, and J. Botsis, “Large scale fiber bridging in mode I intralaminar fracture. An embedded cell approach,” Compos. Sci. Technol., 126, Apr., 52-59 (2016).

  23. O. Pierard, C. Friebel, and I. Doghri, “Mean-field homogenization of multi-phase thermo-elastic composites: A general framework and its validation,” Compos. Sci. Technol., 64, Nos. 10-11, 1587-1603 (2004).

    Article  Google Scholar 

  24. A. V. Malakhov, A. N. Polilov, D. Li, and X. Tian, “Increasing the bearing capacity of composite plates in the zone of bolted joints by using curvilinear trajectories and a variable fiber volume fraction,” Mech. Compos. Mater., 57, No. 3, 287-300 (2021).

    Article  Google Scholar 

  25. L. Zhao, K. Wang, F. Ding, T. Qin, J. Xu, F. Liu, and J. Zhang, “A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding,” Results in Physics, 13, June, 1-10 (2019).

    Google Scholar 

  26. M. J. Emerson, Y. Wang, P. J. Withers, K. Conradsen, A. B. Dahl, and V. A. Dahl, “Quantifying fibre reorientation during axial compression of a composite through time-lapse X-ray imaging and individual fibre tracking,” Compos. Sci. Technol., 168, Nov., 47-54 (2018).

    Article  CAS  Google Scholar 

  27. Abaqus 2018 Analysis User’s Guide, Book Abaqus 2018 Analysis User’s Guide, EditorSimulia (2018).

  28. M. W. Czabaj, M. L. Riccio, and W. W. Whitacre, “Numerical reconstruction of graphite/epoxy composite microstructure based on sub-micron resolution X-ray computed tomography,” Compos. Sci. Technol., 105, 174-182 (2014).

    Article  CAS  Google Scholar 

  29. S. W. Yurgartis, “Measurement of small angle fiber misalignments in continuous fiber composites,” Compos. Sci. Technol., 30, No. 4, 279-293 (1987).

    Article  CAS  Google Scholar 

  30. B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Ando, “Failure behavior of an epoxy matrix under different kinds of static loading,” Compos. Sci. Technol., 61, No. 11, 1615-1624 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Turbin.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 58, No. 4, pp. 715-734, July-August, 2022. Russian DOI: https://doi.org/10.22364/mkm.58.4.04.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turbin, N.V., Trifonov, R.D. & Kovtunov, S.S. Simulation of Crumpling in Composite Materials via Computational Micromechanics. Mech Compos Mater 58, 499–512 (2022). https://doi.org/10.1007/s11029-022-10045-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-022-10045-y

Keywords

Navigation