Skip to main content

A Multiscale Projection Method for the Analysis of Fiber Microbuckling in Fiber Reinforced Composites

  • Chapter
  • First Online:
Virtual Design and Validation

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 93))

Abstract

A multiscale approach called Multiscale Projection Method is adapted for the analysis of fiber microbuckling (fiber kinking) in laminated composites. Based on this global/local multiscale scheme, in the parts of the 0 degree layers of the laminate, where the fiber microbuckling is expected to happen, a fine scale mesh, with the geometrical details and material property of the fiber and matrix, is projected and a concurrent multiscale solution is sought to capture the kink band formation. The delamination between the buckled 0 degree layer and its neighboring plies is simulated using geometrically nonlinear cohesive elements. The effectivity of the proposed multiscale method is investigated through a numerical study of the fiber microbuckling in a \([90_2/0/90_2]\) composite laminate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaudhuri, R. A. (1991). Prediction of the compressive strength of thick-section advanced composite laminates. Journal of Composite Materials, 25(10), 1244–1276.

    Article  Google Scholar 

  2. Rosen, B. W. (1965). Mechanics of composite strengthening. Fibre composite materials (pp. 37–75), Metals Park, Ohio: American Society of Metals.

    Google Scholar 

  3. Sadowsky, M. A., Pu, S. L., & Hussain, M. A. (1967). Buckling of micro fibers. Journal of Applied Mechanics, 34, 1011–1016.

    Article  Google Scholar 

  4. Steif, P. S. (1987). An exact two-dimensional approach to fiber micro-buckling. International Journal of Solids and Structures, 23, 1235–1246.

    Article  Google Scholar 

  5. Chung, W. Y., & Testa, R. B. (1969). The elastic stability of fibers in a composite plate. Journal of Composite Materials, 3, 58–80.

    Article  Google Scholar 

  6. Greszczuk, L. B. (1975). Microbuckling failure of circular fiber-reinforced composites. AIAA Journal, 13, 1311–1318.

    Article  Google Scholar 

  7. Waas, A. M., Babcock, C. D., & Knauss, W. G. (1990). Mechanical model for elastic fiber micro-buckling. Journal of Applied Mechanics, 57(1), 138–149.

    Article  Google Scholar 

  8. Argon, A. S. (1972). Fracture of composites. Treatise on Materials Science and Technology, 1, 79–114. Academic Press, New York.

    Article  Google Scholar 

  9. Budiansky, B. (1983). Micromechanics. Composite Structures, 16, 3–12.

    Article  Google Scholar 

  10. Budiansky, B., & Fleck, N. A. (1993). Compressive failure of fibre composites. Journal of the Mechanics and Physics of Solids, 41(1), 183–211.

    Article  Google Scholar 

  11. Fleck, N. A., Deng, L., & Budiansky, B. (1995). Prediction of kink width in compressed fiber composites. Journal of Applied Mechanics, 62, 329–337.

    Article  Google Scholar 

  12. Fleck, N. A. (1997). Advances in applied mechanics (Vol. 33, pp. 43–117). Amsterdam: Elsevier

    Google Scholar 

  13. Davidson, P., & Waas, A. M. (2014). Mechanics of kinking in fiber-reinforced composites under compressive loading. Mathematics and Mechanics of Solids, 21(6), 667–684.

    Article  MathSciNet  Google Scholar 

  14. Pimenta, S., Gutkin, R., Pinho, S. T., & Robinson, P. (2009). A micromechanical model for kink-band formation, part II: Analytical modeling. Composites Science and Technology, 69(7–8), 956–964.

    Article  Google Scholar 

  15. Davila, C. G., Jaunky, N., & Goswami, S. (2003, April 7–10). Failure criteria for FRP laminates in plane stress. In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia. AIAA Paper No. 2003–1991.

    Google Scholar 

  16. Maimi, P., Camanho, P., Mayugo, J., & Dávila, C. (2007). A continuum damage model for composite laminates: Part I—constitutive model. Mechanics of Materials, 39(10), 897–908.

    Article  Google Scholar 

  17. Maimi, P., Camanho, P., Mayugo, J., Dávila, C. G. (2006). A thermodynamically consistent damage model for advanced composites. Technical Report NASA/TM-2006-214282

    Google Scholar 

  18. Pinho, S. T., Dávila, C. G., Camanho, P., Iannucci, L., Robinson, P. (2005). Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. Technical Report NASA/TM-2005-213530.

    Google Scholar 

  19. Kabiri, Ataabadi A., Ziaei-Rad, S., & Hosseini-Toudeshky, H. (2011). An improved model for fiber kinking analysis of unidirectional laminated composites. Applied Composite Materials, 18, 175–196.

    Article  Google Scholar 

  20. Feld, N., Allix, O., Baranger, E., Guimard, J. M. (2011). A micromechanics-based mesomodel for unidirectional laminates in compression. In R. Rolfes, E. L. Jansen. 3rd ECCOMAS thematic conference on the mechanical response of composites, (pp. 61–68). Germany: Hannover.

    Google Scholar 

  21. Vogler, T. J., Hsu, S. Y., & Kyriakides, S. (2001). On the initiation and growth of kink bands in fiber composites. Part II: analysis. International Journal of Solids and Structures, 38(15), 2653–2682.

    Article  Google Scholar 

  22. Prabhakar, P., & Waas, A. M. (2013). Interaction between kinking and splitting in the compressive failure of unidirectional fiber reinforced laminated composites. Composite Structures, 98, 85–92.

    Article  Google Scholar 

  23. Naya, F., Herráez, M., Lopes, C. S., González, C., Van der Veen, S., & Pons, F. (2017). Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions. Composites Science and Technology, 144, 26–35.

    Article  Google Scholar 

  24. Bishara, M., Rolfes, R., & Allix, O. (2017). Revealing complex aspects of compressive failure of polymer composites –Part I: Fiber kinking at microscale. Composite Structures, 169, 105–115.

    Article  Google Scholar 

  25. Bishara, M., Vogler, M., & Rolfes, R. (2017). Revealing complex aspects of compressive failure of polymer composites—Part II: Failure interactions in multidirectional laminates and validation. Composite Structures, 169, 116–128.

    Article  Google Scholar 

  26. Violeau, D., Ladevèze, P., & Lubineau, G. (2009). Micromodel based simulations for laminated composites. Composites Science and Technology, 69, 1364–1371.

    Article  Google Scholar 

  27. Allix, O., Feld, N., Baranger, E., Guimard, J. M., & Ha-Minh, C. (2014). The compressive behaviour of composites including fiber kinking: modelling across the scales. Meccanica, 49(11), 2571–2586.

    Article  MathSciNet  Google Scholar 

  28. Simo, J. C., & Hughes, T. J. R. (1998). Computational inelasticity (pp. 300–334). New York: Springer.

    MATH  Google Scholar 

  29. Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites—Part I: Plasticity model. Mechanics of Materials, 59, 50–64.

    Article  Google Scholar 

  30. Reinoso, J., & Paggi, M. (2014). A consistent interface element formulation for geometrical and material nonlinearities. Computational Mechanics, 54, 1569–1581.

    Article  MathSciNet  Google Scholar 

  31. Balzani, C., & Wagner, W. (2008). An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Engineering Fracture Mechanics, 75, 2597–2615.

    Article  Google Scholar 

  32. Loehnert, S., & Belytschko, T. (2007). A multiscale projection method for macro/microcrack simulations. International Journal for Numerical Methods in Engineering, 71, 1466–1482.

    Article  MathSciNet  Google Scholar 

  33. Holl, M., Loehnert, S., & Wriggers, P. (2013). An adaptive multiscale method for crack propagation and crack coalescence. International Journal for Numerical Methods in Engineering, 93, 23–51.

    Article  MathSciNet  Google Scholar 

  34. Sun, C. T., & Mao, K. M. (1988). Elastic-plastic crack analysis using a global-local approach on a parallel computer. Computational Structural Mechanics and Fluid Dynamics, 30(1), 395–401.

    Article  Google Scholar 

  35. Fish, J. (1992). The s-Version of the finite element method. Computers and Structures, 43(3), 539–547.

    Article  Google Scholar 

  36. Whitcomb, J. D. (1991). Iterative global/local finite element analysis. Computers and Structures, 40(4), 1027–1031.

    Article  Google Scholar 

  37. Zohdi, T. I., Wriggers, P., & Huet, C. (2001). A method of substructuring large-scale computational micromechanical problems. Computer Methods in Applied Mechanics and Engineering, 190, 5639–5656.

    Article  Google Scholar 

  38. Gendre, L., Allix, O., Gosselet, P., & Comte, F. (2009). Non-intrusive and exact global/local techniques for structural problems with local plasticity. Computational Mechanics, 44(2), 233–245. Springer Verlag.

    Article  MathSciNet  Google Scholar 

  39. Gendre, L., Allix, O., & Gosselet, P. (2011). A two-scale approximation of the Schur complement and its use for non-intrusive coupling. International Journal for Numerical Methods in Engineering, 87, 889–905.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for funding the International Research Training Group, IRTG 1627.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hosseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hosseini, S., Löhnert, S., Wriggers, P., Baranger, E. (2020). A Multiscale Projection Method for the Analysis of Fiber Microbuckling in Fiber Reinforced Composites. In: Wriggers, P., Allix, O., Weißenfels, C. (eds) Virtual Design and Validation. Lecture Notes in Applied and Computational Mechanics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-38156-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38156-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38155-4

  • Online ISBN: 978-3-030-38156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics