Skip to main content
Log in

Influence of Filler on the Structure, Thermal Stability, and Mechanical Properties of Compositions Based on a Modified Polypropylene

  • Published:
Mechanics of Composite Materials Aims and scope

The effect of a filler on the structure, thermal stability, strength, elongation, and impact strength before and after freezing in compositions based on polypropylene modified with a polyolefin elastomer is considered. It is found that the presence of filler reduces the effective activation energy of the thermooxidative destruction of composites and the technological characteristics of thermal stability, which indicated a decrease in the structuredness of the system. The study showed a tendency to increase the melting and crystallization temperatures of polypropylene with a filler content of up to 20 wt%, as well as to a certain narrowing of the temperature range of melting and crystallization with increasing calcite concentration. This was probably associated with the formation of polymer crystallites more uniform in size. It is found that, at a filler content up to 5 wt%, modified calcite particles can serve as additional nucleators. This was reflected in the increasing strength and impact strength by 5 and 6%, respectively, compared with those of the unfilled one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. M. T. Nguen, N. M. Chalaya, and V. S. Osipchik, “Modification of polypropylene with metallocene ethylene propylene elastomer,”Uspekhi Khimii i Khim. Tekhnol., XXXI, No. 11, 79-81 (2017).

    Google Scholar 

  2. M. T. Nguyen, N. M. Chalaya, and V. S. Osipchik, “Structure and physicomechanical properties of mixtures of polypropylene and a metallocene ethylene-propylene elastomer,” Plast. Massy, 10, No. 9, 12-16 (2017).

    Google Scholar 

  3. L. Gargallo, and D. Radic, Physicochemical Behavior and Supramolecular Organization of Polymers, Springer, (2009).

  4. W. Sitticharoen, A. Chainawakul, T. Sangkas, and Y. Kuntham, “Rheological and mechanical properties of silica-based bagasse-fiber-ash-reinforced recycled HDPE composites,” Mech. Compos. Mater., 52, No. 3, 421-432 (2016).

    Article  CAS  Google Scholar 

  5. M. Xanthos, Functional Fillers for Plastic, Weinheim: Wiley-VCH (2010).

  6. S. E. Mambish, “Calcium carbonates in polyolefins,” Plast. Massy, No. 5, 3-6 (2008).

  7. Toxic and Dangerous Properties, Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Agrochemical Industry, Eds. N. Cheremisinoff and P. E. Rosenfeld, William Andrew, 81-213 (2010).

  8. Y.-C. Yang, S.-B. Jeong, S.-Y. Yang, Y.-B. Chae, and H.-S. Kim, “The changes in surface properties of the calcite powder with stearic acid treatment,” Mater. Trans., 50, No. 3, 695-701 (2009).

    Article  CAS  Google Scholar 

  9. Z. Cao, M. Daly, L. Clémence, L. M. Geever, I. Major, C. I. Higginbotham, and D. M. Devine, “Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods,” Appl. Surface Sci., 378, 320-329 (2016).

    Article  CAS  Google Scholar 

  10. S. N. Ermakov, T. P. Kravchenko, “Molecular polymer-polymer compositions. Some aspects of their obtaining,” Plast. Massy, No. 12, 21-26 (2003).

  11. Ya. A. Kuriptya, O. O. Sleptsov, T. S. Shostak, and B. M. Savchenko, “Electrically conductive hybrid composites based on polyolefins,” Vestn. Kyiv. Nation. Univ. Technol. Design., 80, No. 6, 89-97 (in Ukrainian) (2014).

  12. M. Batistella, B. Otazaghine, R. Sonnier, C. Petter, and J.-M. Lopez-Cuesta, “Fire retardancy of polypropylene/kaolinite composites,” Polym. Degrad. Stabil., No. 129, 260-267 (2016).

  13. N. Yang, Z.-C. Zhang, N. Ma, H.-L. Liu, X.-Q. Zhan, B. Li, W. Gao, F.-C. Tsai, T. Jiang, C.-J. Chang, T.-C. Chiang, and D. Shi, “Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride,” Results in Phys., 7, 969-974 (2017).

    Article  Google Scholar 

  14. C. Srivabut, T. Ratanawilai, and S. Hiziroglu, “Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber,” Construction Building Mater., 162, 450-458 (2018).

    Article  CAS  Google Scholar 

  15. E. G. Shushlyaeva, G. V. Minkhaidarova, G. V. Nesyn, E. N. Cherezova, and A. G. Liakumovich, “Modification of polypropylene with a high-molecular-weight polyoctene, Vestn. Kazan. Tekhnol. University, No. 3, 39-44 (2008).

  16. I. I. Salakhov, N. P. Boreiko, M. G. Fatykhov, and S. A. Fedosova, “Modification of polypropylene with cyclic peroxide,” Plast. Massy, No. 2, 22-25 (2012).

  17. S. Saitarly, V. Plavan, N. Rezanova, and N. Sova, “Regulation of rheological and mechanical properties of polypropylene compositions for automotive parts,” Technol. Audit Production Reserves, 6/3, No. 44, 9-14 (2018).

  18. “Impact modifiers: how to make your compound tougher,” Plastics, Additives and Compounding, 6, No. 3, 46-49 (2004).

  19. “ExxonMobil Chemical’s new specialty elastomers provide polymer modification,” Additives for Polymers, No. 9, 2-3 (2009).

  20. G. S. Deshmukh, S. U. Pathak, D. R. Peshwe, and J. D. Ekhe, “Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites,” Bull. Mater. Sci., 33, 277-284 (2010).

    Article  CAS  Google Scholar 

  21. A. N. Kovalenko and A. V. Gurova, “The whole truth about chalk additives,” Polymer Materials: Products, Equipment, Technologies, No. 8, 6-12 (2015).

  22. O. T. Shipina, V. K. Mingazova, V. A. Petrov, and A. V. Kostochko Thermal Analysis in Studying Polymers: Textbook, Kazan: Publishing House of KNRTU (2014).

  23. N. R. Prokopchuk, “Determination of the activation energy of polymer destruction according to thermogravimetry data,” Plast. Massy, No. 10, 24-25 (1983).

  24. V. A. Bernshtein and V. M. Egorov, Differential Scanning Calorimetry in the Physicochemistry of Polymers [in Russian], L.: Khimiya (1990).

  25. A. M. Kochnev, A. E. Zaikin, S. S. Galibeev, and V. P. Arkhireev, Physicochemistry of Polymers [in Russian], Kazan: Feng Publishing House (2003).

  26. I. I. Salakhov, N. P. Boreiko, A. Z. Batyrshin, M. V. Shuiskii, E. V. Temnikova, and M. G. Fatykhov, “The effect of a nucleator based on potassium salt of 1,2-cyclohexane-dicarboxylic acid on the thermophysical and physicomechanical properties of polypropylene,” Plast. Massy, No. 12, 9-12 (2012).

  27. D. G. Papageorgiou, K. Chrissafis, and D. N. Bikiaris, “β-Nucleated polypropylene: processing, properties and nanocomposites,” Polym. Rev., 55, No. 4, 596-629 (2015).

    Article  CAS  Google Scholar 

  28. K. Shirvanimoghaddam, K. V. Balaji, R. Yadav, O. Zabihi, M. Ahmadi, P. Adetunji, and M. Naebe, “Balancing the toughness and strength in polypropylene composites,” Composites: Part B, 223, 1-33 (2021).

    Google Scholar 

  29. Particulate-filled Polymer Composites, Ed. R. N. Rothon - 2nd ed. — Shawbury: Rapra Technol. Ltd. (2003).

  30. K. Premphet and P. Horanont, “Phase structure of ternary polypropylene/elastomer/filler composites: effect of elastomer polarity,” Polym., 41, 9283-9290 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saitarly.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 58, No. 2, pp. 321-334, March-April, 2022. Russian DOI: https://doi.org/10.22364/mkm.58.2.05.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitarly, S., Dzubenko, L., Plavan, V. et al. Influence of Filler on the Structure, Thermal Stability, and Mechanical Properties of Compositions Based on a Modified Polypropylene. Mech Compos Mater 58, 227–236 (2022). https://doi.org/10.1007/s11029-022-10023-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-022-10023-4

Keywords

Navigation