Skip to main content
Log in

Quantifying effect of inorganic filler geometry on the structural, rheological and viscoelastic properties of polypropylene-based thermoplastic elastomers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, polypropylene-based thermoplastic elastomer compounds (TPEs) were formulated by using isotactic polypropylene (i-PP), poly(styrene-b-ethylene/butylene-b-styrene) (SEBS), paraffinic oil and three different inorganic fillers; calcite, organo-clay, and halloysite. Structural, thermal, and rheological properties of TPEs were characterized by SEM, XRD, DSC analysis and rheological measurements in melt state. Effect of geometric features of fillers (as 1D, 2D, and 3D structure) on viscoelastic properties of TPEs was quantified by applying different test procedures and modeling approaches such as Williamson model and discrete retardation spectrum, and utilization of cross-over frequency. It was found that reinforcing effect of fillers decreased in the order of org-clay>halloysite>calcite in the case of same loading amount (5 wt%) into TPE compositions. It was found that 2D structure of org-clay layers led to a significant increase in melt viscosity and melt elasticity, creep strength, and relaxation time but reduced the relaxation rate of TPEs, compared to halloysite and calcite used in a particular amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Drobny JG (2007) Handbook of thermoplastic elastomers. USA, NY

    Google Scholar 

  2. Benmesli S, Riahi F (2014) Dynamic mechanical and thermal properties of a chemically modified polypropylene/natural rubber thermoplastic elastomer blend. Polym Test 36:54–61

    Article  CAS  Google Scholar 

  3. Zhang ZN, Yu FY, Zhou N, Zhang HB (2015) Compatibilization by Olefin Block Copolymer (OBC) in Polypropylene/Ethylene-Propylene-Diene Terpolymer (PP/EPDM) Blends. J Macromol Sci Part B Polym Phys 54:159–176

    Article  CAS  Google Scholar 

  4. Kim YG, Kim Y, Choi JK, Baeck SH, Shim SE (2017) Preparation and Properties of Polypropylene/Thermoplastic Polyester Elastomer Blends. Polymer Korea 41:514–523

    Article  CAS  Google Scholar 

  5. Wang J, Guo J, Li C, Yang S, Wu H, Guo S (2014) Crystallization kinetics behavior, molecular interaction, and impact-induced morphological evolution of polypropylene/poly(ethylene-co-octene) blends: insight into toughening mechanism. J Polym Res 21:618

    Article  CAS  Google Scholar 

  6. Dutt K, Soni RK, Singh H (2012) Thermal Stability and Crystallization Behavior of TER Blends of Isotactic Polypropylene (iPP)/Ethylene-Propylene Diene Rubber (EPDM)/Nitrile Rubber (NBR). Int J Polym Mater 61:864–881

    Article  CAS  Google Scholar 

  7. Tiggemann HM, Tomacheski D, Celso F, Ribeiro VF, Nachtigall SMB (2013) Use of wollastonite in a thermoplastic elastomer composition. Polym Test 32:1373–1378

    Article  CAS  Google Scholar 

  8. Lou C-W, Huang C-L, Pan Y-J, Lin Z-I, Song X-M, Lin J-H (2016) Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites. J Polym Res 23:84

    Article  Google Scholar 

  9. Guezzout Z, Doufnoune R, Haddaoui N (2017) Effect of graphene oxide on the properties of compatibilized polypropylene/ethylene-propylene-rubber blend. J Polym Res 24:129

    Article  Google Scholar 

  10. Kannan M, Bhagawan SS, Thomas S, Joseph K (2013) Nanoclay effect on transport properties of thermoplastic polyurethane/polypropylene (TPU/PP) blends. J Polym Res 20:201

    Article  Google Scholar 

  11. Su F-H, Huang H-X (2009) Mechanical and rheological properties of PP/SEBS/OMMT ternary composites. J Appl Polym Sci 112:3016–3023

    Article  CAS  Google Scholar 

  12. Pustak A, Denac M, Škapin AS, Švab I, Musil V, Šmit I (2016) Mechanical and rheological properties of silica-reinforced polypropylene/m-EPR blends. J Polym Res 23:163

    Article  Google Scholar 

  13. Qazviniha MR, Abdouss M, Musavi M, Mazinani S, Kalaee M (2016) Physical and mechanical properties of SEBS/polypropylene nanocomposites reinforced by nano CaCO3. Mat-wiss u Werkstofftech 47:47–52

    Article  CAS  Google Scholar 

  14. Tiggemann HM, Ribeiro VF, Celso F, Nachtigall SMB (2015). Appl Clay Sci 109–110:151–156

    Article  Google Scholar 

  15. Sanporean CG, Vuluga Z, Radovici C, Panaitescu DM, Iorga M, Christiansen JC, Mosca A (2014) Polypropylene/organoclay/SEBS nanocomposites with toughness–stiffness properties. RSC Adv 4:6573–6579

    Article  CAS  Google Scholar 

  16. Martin Z, Jimenez I, Angeles Gomez M, Ade H, Kilcoyne DA (2010) Interfacial Interactions in PP/MMT/SEBS Nanocomposites. Macromolecules 43:448–453

    Article  CAS  Google Scholar 

  17. Panaitescu DM, Vuluga Z, Radovici C, Nicolae C (2012) Morphological investigation of PP/nanosilica composites containing SEBS. Polym Test 31:355–365

    Article  CAS  Google Scholar 

  18. Sengers WGF, Wübbenhorst M, Picken SJ, Gotsis AD (2005) Distribution of oil in olefinic thermoplastic elastomer blends. Polymer 46:6391–6401

    Article  CAS  Google Scholar 

  19. Ma BS, Xia QB, Yin JC, Guo CM, Ren TH (2016) The distribution of rubber oil in oil-extended thermoplastic elastomer styrene–butadiene–styrene. J Elastomers Plast 48:239–250

    Article  CAS  Google Scholar 

  20. Marinelli AL, Bretas RE (2003) Blends of polypropylene resins with a liquid crystalline polymer. I. Isothermal crystallization. J Appl Polym Sci 87:916–930

    Article  CAS  Google Scholar 

  21. Pope CG (1997) X-Ray Diffraction and the Bragg Equation. J Chem Educ 74:129–131

    Article  CAS  Google Scholar 

  22. Balkan O, Ezdesir A, Demirer H (2010). Polym Compos 31:1265–1284

    CAS  Google Scholar 

  23. Panaitescu DM, Vuluga Z, Notingher PV, Nicolae C (2013). Polym Eng Sci 53:2081–2092

    CAS  Google Scholar 

  24. Lima PS, Oliveira JM, Costa VAF (2015). J Appl Polym Sci 132:42589

    Google Scholar 

  25. Arevalillo A, Munoz ME, Santamaria A, Fraga L, Barrio JA (2008) Novel rheological features of molten SEBS copolymers: Mechanical relaxation at low frequencies and flow split. Euro Polym J 44:3213–3221

    Article  CAS  Google Scholar 

  26. Ma BS, Xia QB, Yin JC, Guo CM, Ren TH (2016) The distribution of rubber oil in oil-extended thermoplastic elastomer styrene–butadiene–styrene. J Elastomers Plast 48:239–250

    Article  CAS  Google Scholar 

  27. Alanalp MB, Durmus A (2018) Quantifying microstructural, thermal, mechanical and solid-state viscoelastic properties of polyolefin blend type thermoplastic elastomer compounds. Polymer 142:267–276

    Article  CAS  Google Scholar 

  28. Willamson RV (1929) The Flow of Pseudoplastic Materials. Ind Eng Chem Res 21:1108–1111

    Article  Google Scholar 

  29. Kasgoz A, Akın D, Durmus A (2014) Rheological and electrical properties of carbon black and carbon fiber filled cyclic olefin copolymer composites. Composites Part B 62:113–120

    Article  CAS  Google Scholar 

  30. Kasgoz A, Akın D, Durmus A (2012) Rheological behavior of cycloolefin copolymer/graphite composites. Polym Eng Sci 52:2645–2653

    Article  CAS  Google Scholar 

  31. Kasgoz A, Akın D, Durmus A (2012) Rheological and mechanical properties of cycloolefin copolymer/organoclay nanocomposites. J Reinf Plast Compos 31:1329–1341

    Article  Google Scholar 

  32. Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 48:4492–4502

    Article  CAS  Google Scholar 

  33. Shaikh HM (2018) Effect of carbon fiber as secondary filler on the electrical, thermal and rheological properties of carbon fiber/polypropylene composites. J Polym Eng 38:545–553

    Article  CAS  Google Scholar 

  34. Lan C-H, Sun Y-M (2018) Dispersion, crystallization behavior, and mechanical properties of poly(3-hydroxybutyrate) nanocomposites with various silica nanoparticles: effect of surface modifiers. J Polym Res 25:121

    Article  Google Scholar 

  35. Kráčalík M, Pospíšil L, Šlouf M, Mikešová J, Sikora A, Šimoník J, Fortelný I (2008) Recycled poly(ethylene terephthalate) reinforced with basalt fibres: Rheology, structure, and utility properties. Polym Compos 29:437–442

    Article  Google Scholar 

  36. Ma G, Yue X, Zhang S, Rong C, Wang G (2011) Preparation and properties of poly(ether ether ketone) composites reinforced by modified wollastonite grafting with silaneterminated poly(ether ether ketone) oligomers. J Polym Res 18:2045–2053

    Article  CAS  Google Scholar 

  37. Hashemi SA, Arabi H, Mirzaeyan N (2007) Surface modification of bagasse fibers by silane coupling agents through microwave oven and its effects on physical, mechanical, and rheological properties of PP bagasse fiber composite. Polym Compos 28:713–721

    Article  CAS  Google Scholar 

  38. Han CD, Kim J (1987) Rheological technique for determining the order–disorder transition of block copolymers. J Polym Sci Part B Polym Phys 25:1741–1764

    Article  CAS  Google Scholar 

  39. Jafari SH, Hesabi MN, Khonakdar HA, Asl-Rahimi M (2011) Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends. J Polym Res 18:821–831

    Article  CAS  Google Scholar 

  40. Chen Y, Zou H, Cao Y, Liang M (2014) Melt miscibility of HDPE/UHMWPE, LDPE/UHMWPE, and LLDPE/UHMWPE blends detected by dynamic rheometer. Polym Sci Ser A+ 56:630–639

    Article  CAS  Google Scholar 

  41. Zare Y, Garmabi H, Rhee KY (2018) Structural and phase separation characterization of poly(lactic acid)/poly(ethylene oxide)/carbon nanotube nanocomposites by rheological examinations. Composites Part B 144:1–10

    Article  CAS  Google Scholar 

  42. Kourki H, Famili MHN, Mortezaei M, Malekipirbazari M, Disfani MN (2016) Highly nanofilled polystyrene composite. J Elastomers Plast 48:404–425

    Article  CAS  Google Scholar 

  43. Mohammadi M, Yousefi AA, Ehsani M (2012) Thermorheological analysis of blend of high- and low-density polyethylenes. J Polym Res 19:9798

    Article  Google Scholar 

  44. Gurp MV, Palmen J (1998). Rheol Bull 67:5–8

    Google Scholar 

  45. Jyoti J, Singh BP, Rajput S, Singh VN, Dhakate SR (2016) Detailed dynamic rheological studies of multiwall carbon nanotube-reinforced acrylonitrile butadiene styrene composite. J Mater Sci 51:2643–2652

    Article  CAS  Google Scholar 

  46. Kashi S, Gupta RK, Baum T, Kao N, Bhattacharya SN (2018) Phase transition and anomalous rheological behaviour of polylactide/graphene nanocomposites. Composites Part B 135:25–34

    Article  CAS  Google Scholar 

  47. Das D, Satapathy BK (2014) Microstructure-rheological percolation-mechanical properties correlation of melt-processed polypropylene-multiwall carbon nanotube nanocomposites: Influence of matrix tacticity combination. Mater Chem Phys 147:127–140

    Article  CAS  Google Scholar 

  48. Duffy JJ, Rega CA, Jack R, Amin S (2016). Appl Rheol 26:15130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Durmus.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanalp, M.B., Durmus, A. & Aydin, I. Quantifying effect of inorganic filler geometry on the structural, rheological and viscoelastic properties of polypropylene-based thermoplastic elastomers. J Polym Res 26, 46 (2019). https://doi.org/10.1007/s10965-019-1711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1711-y

Keywords

Navigation